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1 The Strategic (Normal) Form

Every strategy profile induces an outcome of the game: a sequence of moves actually takeniéisdpec
by the strategies and a probability distribution over the terminal nodes of the.dathe game is one of
certainty (no moves by Nature), therspecifies one outcome with certainty. Otherwise, more than one
outcome may occur with positive probability. The point is that we can calculatexipected payoffs of all
players. Sometimes, it is useful to analyze the game #stiiggegic form, which includes only the players,
their actions, and the payoffs in its description.

Putting things a little more formally, let be the number of players. For each playedenote the
strategy space b§;. (We shall sometimes writg € S; to reflect that strategy; is a member of the set
of strategiesS;.) Let (s, 52, ..., 5,) denote a strategy profile, whergis the action of player 1s, is the
action of player 2, and so on. L8t= S; x S, x ... x S, denote the set of strategy profiles.

For each playef, define the vNM expected utility functiobl; : S — R so that for eachh € S that
players choosd/; (s) is playeri’s expected payoff from outcome

DEerFINITION 1. For a game witld = {1,...,n} players, thestrategic (normal) form representation
G = {4, S, U} specifies for each playeéra set of strategieS; and a payoff functio/; : S — R, where
S =xS8;,andU = (Uy,...,Uy).

When we analyze these games, we often assume that players choogeategjies simultaneously, and
hence we call themsimultaneous-move gamesHowever, this does not require that players strictly act at
the same time. All that is necessary is that each player acts without knowdédgpat others have done.
That is, players cannot condition their strategies on observable acfitms ather players.

Of course, this ignores the information about timing of moves explicitly spedfjdte extensive form.
The question boils down to whether we think such questions are essential sduhtion we are trying
to analyze. If they are not, then it should not matter greatly if we simplify oscidation to exclude
such information. In an important sense, the strategic fornstatic modelbecause it dispenses with the
dynamics of timing of moves completely.

This may not be as controversial (or useless) as it sounds. First, akaNlesee, there are great many
situations that we might profitably analyze without reference to the timing of sao8econd, the sim-
plified representation is actually considerably easier to analyze, so weecafit from dispensing with
information that is not essential. We shall, of course, also see that treeneceny, many situations where
ignoring timing has crucial consequences and our solutions based oorthalrform will be quite sus-
picious precisely because they will discard such information. The questgain) will boil down to the
choice of representation, which a researcher has to make basedskillreand experience.

1.1 Reduced Strategic Form

Two pure strategies aegjuivalentif they induce the same probability distribution over the outcomes for
all pure strategies for the opponents. Or, putting it a bit more formally:

DEFINITION 2. Given any strategic form gam@ = {4, S, U}, for any playeri and any two strategies
s1,82 € S;, the strategies; ands, arepayoff-equivalentif, and only if,

Uj(s1,5-i) = Uj(s2,5-i), Vs €S, Vjed.

That is, no matter what all other players do, no player cares whethsess; or s,. Let’s parse this
expression. To see whether two strategies for player 1 are payafiedent, we take each strategy of
player 2 in turn and compare the payoffs that player 1 obtains from playiagds, against that, then we
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compare the payoffs that player 2 obtains from player 1 playjr@nds, against her strategy. If either of
these two comparisons produces a difference, stop: the two strategiestgrayoff-equivalent. If, on the
other hand, they yield the same payoffs in both cases, proceed to thetraesty for player 2 and repeat
the process. If you exhaust all strategies for player 2 in this way anzbthparisons have not yielded any
differences, then the two strategies for player 1 are payoff-equitzale

Consider the game in Fig. 1 (p. 3), where the stratediEsand A F for player 1 are equivalent.

Player 2

c d

AE | 1,1 1,1

AF | 1,1 1,1
PIayerlBE 132
BF | —1,1| 4,0

Figure 1: Simple Game with Equivalent Pure Strategies.

In this example, the two pure strategids® and AF always lead to the same outcome because the
game ends when the first action is taken and so the second information eetigeached. This happens
regardless of what player 2 does at her information set. That is, fieplayg strategy to be, then:

(i) player 1's payoff fromAE is 1, which is the same as his payoff fra#rF’; (ii) player 2’s payoff from
player 1 choosingl E is 1, which is the same as her payoff from him choosig. So neither player cares

if player 1 choosedl E or AF if player 2 chooses. Next, fix player 2’s strategy to b, then: (i) player

1's payoff fromAE is 1, which is the same as his payoff fraa¥'; (ii) player 2's payoff from player 1
choosingA E is 1, which is the same as her payoff from him choosi#¥g. Hence, neither player cares if
player 1 choosed E or AF if player 2 choosed. Since there are no more strategies for player 2 to check
against, we are done: no player cares what player 1 does regartiesat player 2 chooses. Observe that
in these comparisons we had to check whether player 1 himself would cajastwhether his opponent
would. We can now simplify the normal form representation by removing albbe strategies from every
class of equivalent strategies.

DEFINITION 3. Thepurely reduced normal form of an extensive form game is obtained by eliminating
all but one member of each equivalence class of pure strategies.

Therefore, we can remove eithé®z or AF (but not both) to obtain the reduced normal form shown in
Fig. 2 (p. 3). The “new” strategy for player 1 is called

Player 2

c d

Al 1,1 1,1
Player1 BE | —1,1 | 3,2
BF | —1,1| 4,0

Figure 2: The Reduced Normal Form of the Game from Fig. 1 (p. 3).

The example we just did may be a bit misleading because the payoffs for yleeptae always the same
in all the outcomes regardless of what player 2 chooses. This neee itint lsase. To see that, consider
the strategic form game in Fig. 3 (p. 4).

To decide whethet/ and D are payoff-equivalent, we first fix player 2’s strategy/aand observe
that players get3, 1) no matter which of the two pure strategies under consideration player E&fo00
We then fix player 2's strategy & and observe that players get2, 0) regardless of whether player 1
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Player 2

L R LPIayer;
u| 31 | =2,0 Ul a1 T=20
Player1 M | 4,3 4,3 Player 1 : .
D | 3,1 |-2,0. M1 43|43

Figure 3: Reducing a Game with Different Payoffs.

choosed/ or D. Hence, the two are payoff-equivalent, and we can eliminate one of théserae that
a player can get different payoffs depending on whether playeo8sdsl or R from strategies that are
payoff-equivalent (i.e., player 1 can get eitBesr —2) but this is not the relevant comparison to make. For
example, both players gét, 3) if player 1 choosed/ regardless of player 2’s action. However, this does
not mean that. and R are payoff-equivalent (because players would get differentdfigpgainst either
one of these if player 1 chooses a different strategy.)

Consider now the game in Fig. 4 (p. 4).

Player 2
X _y
(a,c) | 6,0 | 6,0
(a,d) | 6,0 | 6,0
(a,e) | 6,0 ] 6,0
Player 1 b.o) [80]08
(b,d) | 0,8 |38,0
(b,e) | 3,4 17,0

Figure 4: Another Game from Myerson.

It is fairly obvious that the strategigs, ¢), (a,d), and(a, e) are payoff equivalent to one another
because regardless of what player 2 does, the outcome from all thheesame. In other words, player 1
does not care what player 2 does if he chooses any of these thitegistsa\We can therefore merge these
three strategies into a new one, callédwith the resulting payoff matrix in Fig. 5 (p. 4).

Player 2
X Y
A|6,0]6,0

(b.c) [8,0]0,8
(b.d) | 0,880
(b.e) [3,4]7.0

Player 1

Figure 5: The Purely Reduced Strategic Form of the Game from Fig. 3.(p. 4

We can reduce this game further, but to do this, we need to introduce theptarf mixed strategies.

2 Mixed Strategies in Strategic Form Games

So far, we have considered only strategies that involve playing a selectied with probability 1. We
called thesgure strategiesto emphasize this. We now consider randomized choices.



DEFINITION 4. A mixed strategyfor playeri, denoted bys;, is a probability distribution ovei’s set of
pure strategies§;. Denote the mixed strategy space for playby X;, whereo; (s;) is the probability that
o; assigns to the pure strategye S;. The space of mixed strategy profiles is denotedby AY;.

Thus, if playeri hasK pure strategiesS; = {si1, si2,..., sk}, then a mixed strategy for playéris a
probability distributiono; = {0;(si1),0i(si2),...,0i(sik)}, Wherea; (s;;) is the probability that player
i will choose strategy;, for k = 1,2,..., K. Sinceg; is a probability distribution, we require that

oi(s;r) € [0, 1] forall k = 1,2,..., K andz,f=lai(sik) = 1. That is, the probabilities must be non-
negative and not larger than 1, and should sum up to 1. You can thinkniexd strategy as a lottery
whose “outcomes” are pure strategies.

Each player’s randomization is statistically independent of those of hisnempst and the payoffs to
the mixed strategy profile are the expected values of the correspondimgtpategy payoff$.You should
now see why we needed Expected Utility Theory. Playepayoff from a mixed strategy profike € ¥
in ann-player game is

ses \j=1

n
Ui(o) =) (1‘[ o (s,-)) ui (s)
Let’s parse this expression. The mixed strategy profile a list of mixed strategies, one for each player:
o = {01,02,...,0,}. Each of these mixed strategies, eig. is a list of probabilities associated with
playeri’s set of pure strategies. To find the probability of an outcome, we neaddulate the probability
that all players choose the pure strategies that produce this outcon®.iffthe pure strategy profilee S
produces the outcome we are interested in, the probability of this outcome isoth&cpof probabilities
that each player chooses the pure strategy in this profile (becauseepéimience).

Consider first an example from a game without chance moves, like Matckimgiés. To make things
specific, let’s use the mixed strategy profile= ((13H, 2/3T), (1/4H, 3/4T)). In this profile, player 1's
mixed strategy specifies playing with probability 1/3 andT with probability 2/3, and player 2’s mixed
strategy strategy specifies playifywith probability 1/4, andT with probability 3/4. There are four pure
strategy profilesS = {(H, H), (H,T),(T, H), (T, T)} that produce the four outcomes of the game.

As usual, the strategy profiteinduces a probability distribution over the outcomes. The probability of
each outcome is the product of the probabilities that each player choesesavant strategy. For example,
the probability of the pure strategy profilé/, H) being played iq1/3) (1/4) = 1/12. Analogously, the
probabilities of the other pure strategy profiles being played a8 Af) = 1/4, P(T, H) = 1/, and
Pr(T,T) = 1/. (You should verify that these sum to 1, which they must because thgyalabilities
of exhaustive and mutually exclusive events.) Fig. 6 (p. 5) shows thmapiiity distribution over the four
possible outcomes induced by the two mixed strategies.

H T
H | 11| Y4
T Vo | 1

Figure 6: The probability distribution over outcomes inducedby

Player 1's payoffs from these outcomes ai€H, H) = u (7, 7) = 1 andu(H,T) = u1(T, H) =
—1. Multiplying the payoffs by the probability of obtaining them and summing over é&kpected utility
calculation we have done before) yields an expected payodffietl) + 1/2(1) + /a(—1) + Ye(—1) =

IThat is, the joint probability equals the product of individual probabilities.
2In all cases where we shall calculate mixed strategies, the space ofipaiegies will be finite so we do not run into
measure-theoretic problems.



l/6. Thus, player 1's expected payoff from the mixed strategy profikes specified above i5s. Note
how we first did the multiplication term and then summed over all available putegyrarofiles, while
multiplying by the utility of each. This is exactly what the expression above.dBesalling thatS =

{(H,H),(H,T),(T, H),(T, T)}, we can write:

2
Uro) = ) (1‘[ oj(sn) u1(s)

seS \Jj=1
= o01(H)o2(H)u1(H, H) + 01(H)o2(T)u1(H,T)
+ o1(T)o2(H)ui(T, H) + 01(T)o2(T)ur(T.T)
= (1) (Vo) + (13) G/ (=D + (23) (Y (=1 + (3/3)(3/4) (1)
= L.
Consider now an example from a game that does involve chance moves,dikeatd Game, whose
strategic formis in Fig. 25 (p. 25). Suppose we wanted to know playex@scted payoff from the mixed

strategy profiles = ((1/3, 1/4, 5/12,0), (1/3, 2/3)). That is, for player 1g1(Rr) = /3, 01(Rf) = 1/a,
01(Fr) = 5/12, ando; (F f) = 0, whereas for player 25, (m) = 1/ ando,(p) = 2/3. So,

2
Us(0) =) (1‘[ 0 (s,o) 5 (s)

seS \Jj=1
= o01(Rr)oa(m)uz(Rr,m) + o1(Rr)o2(p)uz(Rr, p)
+ o1(Rf)o2(m)uz(Rf,m) + o1(Rf)o2(p)uz(Rf, p)
= o1(Fr)oa(m)uz(Fr,m) + o1(Fr)oa(p)uz(Fr, p)
+ 01(F f)oa(m)uz(Ff.m) + o1(Ff)oz2(p)ua(Ff, p)
= (13)(13)(0) + (1/3)(2/3)(—1) + (1/4)(1/3)(0.5) + (1/4)(?/3)(—1)
= (512)(13)(=0.5) + (5/12)(?/3)(0) + (0)(1/3)(0) + (0)(2/3)(0)

= —3/12.

If you wanted to compute the probability distribution over the outcomes induged you should get the
resultin Tab. 7 (p. 6).

m p
Rr| 1) 2/q
Rf | Vo | Vs
Fr | 556 | %18
Ffl o | o

Figure 7: The probability distribution over outcomes for Fig. 25 (p. 25) aedibyo.

As the last example showed, there is no requirement that a mixed strategpopitige probabilities on
all available pure strategies. Thapport of a mixed strategy; is the set of strategies to whieh assigns
positive probability. This means that we can think of a pure strategg adegenerate mixed strategy
that assigns probability 1 tg and O to all remaining pure strategies (i.e. the support of a degenerate mixed
strategy consists of a single pure strategy)coipletely mixed strategyassigns positive probability to
every strategy ir$; .2

3Completely mixed strategies are important because a strategy profilenpletely mixed strategies assigns positive prob-



As mentioned in the previous section, we can further reduce some strategiacghmes. Consider
the game in Fig. 5 (p. 4). Although no other pure strategies are payoffagnt, the strategyb, ¢) is
redundant in an important sense. Suppose player 1 were to choosehdhe strategyd and(b, d) with
a flip of a fair coin. The resulting randomized strategy can be denotedowith0.5[A] + 0.5[b, d], and
would give the expected payoffs:

U(o, x) = (0.5)(6,0) + (0.5)(0,8) = (3,4)
U(o.y) = (0.5)(6,0) + (0.5)(8.0) = (7,0).

In other words, we could get the payoffs frgi ¢) from randomizing between the strategieand(b, d).
We formalize this notion as follows:

DEFINITION 5. A strategys; € S; is randomly redundant if and only if there exists a mixed strategy
o; € X; such that; (5;) = 0 and

Uj(Si,5—i) = Z oi (si)uj(si,s—i) Vs—j € S—ij, Vjed.

s; €S}

That is each player’s payoffs from the profiles involvitigcan be expressed as the expected payoffs from
a mixed strategy for playerthat does not havg in its support. In other words; is randomly redundant

if there is some way for playerto mix his other pure strategies such that no matter what combination of
strategies the other players choose, every player would get the saswexkpayoff whethar usess; or
mixes in this way.

DEeFINITION 6. Thefully reduced normal form of an extensive form gamé is obtained from the purely
reduced representation Bfby eliminating all randomly redundant strategies.

The fully reduced normal form Fig. 4 (p. 4) (whose purely reducednabform is in Fig. 5 (p. 4)) is
givenin Fig. 8 (p. 7).

Player 2
X Yy
A16,0]6,0

Player 1 (b,c) | 8,0 | 0,8
(b,d) | 0,8 38,0

Figure 8: The Fully Reduced Strategic Form of the Game from Fig. 4 (p. 4).

Consider the example in Fig. 9 (p. 8): how are we to approach somethingilke ttecide whether there
are any strategies that are randomly redundant? Obviously, the onipipties must involve strategies
for player 1, but which one(s)? We can begin by simple elimination by askivejher any two strategies
can be mixed to eliminate a third one. We cannot elimin&atby any mixture of two or more of the
remaining three pure strategies because player 1's payoff agaiisshegative if he playst and non-
negative otherwise. Since any mixture®fC, andD must yield a non-negative payoff againsas well,
there is no way to match the payoff from It is also impossible to eliminat® with any combination
of the other three strategies: player 1's payoff againss 3, which is strictly greater than any of the
other payoffs he could get against This means that any mixture ef, C, and D must yield player 1

ability to every possible outcome in the game. As we shall see later, theremdal solution concept (Nash equilibrium) will
not produce any odd results in that situation. Problems with Nash equiliffiuthe sense of unreasonable predictions about
optimal behavior) might only occur when the strategy profile induces perbability for one or more of the possible outcomes.



an expected payoff strictly less than 3, so they cannot mAtch is also impossible to eliminat€; this
time, note that player 2’s payoff againStwhen she playd. is —1, which is strictly less than any of her
payoffs against the other three strategies for player 1. This meanshatigture of A, B, andD must
give player 2 a payoff strictly better thanl when she choosds, so it will not be possible to matofi.

Player 2
L R
A —-1,0 | =14,1h
B | 3,1h —1,%s
Pl 1
et Mo -1 1,0
D | 3/4,=1s| 0,1/

Figure 9: Less Obhvious Example.

All of this means that if there is any randomly redundant strategy for playiwould have to beD.
What mixture of some combination of, B, andC can work? First, note that it cannot be a mixture
betweend and B by themselves: player 2's payoff froi would be non-negative and she must géfs
to match her payoff againg. Can it be a mixture betwea® andC by themselves? Looking at player 1's
payoffs agains®k, we can see that he getd from B and1 from C. There is only one way to match the
payoff of 0 he obtains fromD: mix B andC with equal probabilities. But then player 2’s payoff against
the mixture would be&/16 when she choose®, which does not match her payoff &6 againstD. Hence,
it is not possible to eliminat® with a mixture of B andC alone.

This leaves us with just one more possibility: mix B, andC to eliminateD. If D is randomly-
redundant, then the following system of equations must have a unique solutio

—01(A) +301(B) = 3/4
—1/301(A) —01(B) +01(C) =0
1201(B) —01(C) = —1/4
1201(A4) + 9/801(B) = 1/,

such that1(A) + 01(B) + 01(C) = 1 andoi(a) € (0,1) foralla € {4, B, C}. From the last equation,
we obtaino (A) = 1— %401 (B). Plugging this into the first equation and multiplying both sided Hyen
gives us—4 + 901 (B) + 1201(B) = 3, which then yields the solutiom (B) = 7/21 = 1/3. Plugging this
into the third equation yield$/s — 01 (C) = —1/4, soo1(C) = 5/12. Finally, plugging these two into the
second equation reduces it+d/301(A4) — 1/3 + 5/12 = 0, which implieso; (4) = 1/4. Of course, since
we know the probabilities must sum up to 1, we could have just compuytet) = 1 — o1(B) — 01(C)

to obtain the same result. This way, however, we can verify that the sunitys smwe have not messed
up any of our calculations. We now have the mixed stratagy: (1/4, 1/3, 5/12, 0) which yields the same
expected payoffs to either player Asdoes against., and the same expected payoffs to either playdd as
does againsk. Hence,D is randomly redundant and we can safely eliminate it without losing anything
in the process.

One question you may have at this point is what happens if there are mometbaandomly-redundant
strategies: would it matter which one gets eliminated first? What if we use somestpategy to eliminate
another and then eliminate that pure strategy itself: does that mean we hastte the one we originally
eliminated or is it possible to eliminate it without using that pure strategy? As ittwtn& does not matter
which order you do the elimination in: if you can eliminate a pure strate@y a mixed strategy that has
s,s’, ands” in its support and then itself gets eliminated by another mixed strategy with arilgnds”
in its support, then it is possible to eliminafevith a mixed strategy that only haSands” in its support.
Let's see an example that illustrates this, so consider Fig. 10 (p. 9).
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L R

Al 1.2 —2.0 4 1L2 _50 L R

B| 03 —1).2 305 [-i%2 Al 1.2 [-2.0
cl 1.4 1,4 cr ot i C-L4] 1,4
D _1/4’ 13/4 _1/8» 5/2 2 2

Figure 10: Order of Elimination Does Not Matter.

The mixed strategy = (1/a, 1/4, 1/2,0) makesD randomly-redundant in the original game on the
left, producing the reduced normal form in the middle. But thén= (1/2,0, 1) makesB randomly-
redundant in that intermediate form, producing the fully reduced form emigint. The question then is:
since we used to eliminateD in the first step, would we still be able to eliminafe now that weB
itself is gone? That is, do we nedtlto keepD out? The claim is that sinc8 can be eliminated by
A andC, then it should be possible to eliminai® with only these two strategies as well. What is the
appropriate mixture then? Since mixingand C with equal weights eliminates, let's distribute the
weight on B in the originalo evenly toA andC and check if the result can eliminafe. That is, add
1/¢ to the probabilitiesr assigns tad and C to considers” = (3/3,0, 5/3,0) in the original game. It
is straightforward to verify that this strategy makRsrandomly redundant: against player’'s expected
payoff is 3/s — 5/s = —2/s = —1/4 and player 2's expected payoff &g(2) + 5/3(4) = 26/g = 13/4;
analogously, againsk, player 1's expected payoff i&/s(—2) + 5/ = —1/5, and player 2's expected
payoff is 5/s(4) = 5/». This means that we can usé to eliminateD and therv’ to eliminateB, yielding
the same fully reduced form.

It is sometimes quite tricky to identify randomly redundant strategies. It mayoogawour while to try
anyway because by reducing the number of strategies to consider fordhesis, you will greatly simplify
your task (you will see what | mean when we begin solving the games next tldmégss we explicitly
state otherwise, we shall take tiegluced strategic form representatiommean the fully reduced form.

You might wonder why we are eliminating redundant strategies: after all, ibe we remove from
considerations do, in fact, specify ways to play the game and reach lyoddfbrent outcomes. For
instance, in the reduced strategic form in Fig. 10 (p. 9), there are nome&{ D, L) or (D, R), which
were both available in the original specification. Aren’t we losing somethingnwize do not consider
them? If there are several redundant strategies, does it not matteravigshve eliminate? The answer is
that for theanalysisof the game, it will not matter. When we find solutions that involve a strategyntat
other payoff-equivalent ones in the original game, then we will immediatedyvkihat the original game
has more solutions: we would obtain those by replacing the strategy with tlo&-eayivalent ones we
eliminated. Thus, suppose for instance that in the reduced form we fmlatibns in which4 andC are
played with probabilityl/> each. Because we know that this mixed strategy is payoff equivalent to the
pure strategyB, we immediately know that there are solutions in which player 2’s strategy isithe but
player 1 playsB instead of that particular mixed strategy. If, however, the solution invalvaddC with
some other probabilities, then there will be no solutions that inv8lv&hus, when we want to provide a
substantive interpretation for the solution, we have to remember the paywaiffalent strategies.

3 Nash Equilibrium

The most common definition of rationality in game theory is based on the idea tlyatplaould choose
strategies that yield the highest expected payoff given what they thinéttteg players are doing; that
is, players would choose thHmest responsdo their expectations about the behavior of others. Since all
players are “rational” in that sense, they must expect the others to beinlgaheir best responses as well.



In other words, all players must be best-responding to each othern Yitseehappens, no player would
have an incentive to change their strategy because, by definition, bida@improved upon by any other
strategy. This is why a profile of strategies that are mutual best respiansalled arequilibrium , and it
was named in honor of John Nash who proved that most games must leastane strategy profile with
that property.

Scholars often refer to particular definitions of rationalitysatution conceptswhich is presumably
meant to emphasize the fact that any conceptual definition of rationality iamapag many. Nash equi-
librium is foundational not only because it is the most commonly used onedoauise it underlies many
stronger definitions of rationality like subgame perfection, perfect Bagesquilibrium, and so on.

For the remainder of this course, we shall defiatonal behavior aschoosing the best response to
one’s expectations about the behaviors of others

3.1 Nash Equilibrium in Pure Strategies

Rational players think about actions that the other players might take, andctioose strategies that
yield the highest expected payoff given their expectations about theso®ech strategies are calledst
responsegor best replies

DEFINITION 7. Suppose player has some belief_; € S_; about the strategies played by the other
players. Playei’s strategys; € S; is abest responsef

u; (si,5—i) > ui(s;, s—;) for everys; € S;.

We now define thdvest response correspondengeBR; (s—;), as the set of best responses playéas
to s—;. It is important to note that the best response correspondence islsed-valhat is, there may
be more than one best response for any given belief of play#rthe other players stick to_;, then
playeri can do no better than using any of the strategies in thBRdt_;). Consider, for example, the
game in Fig. 11 (p. 10): In this gamBR; (L) = {M}, BRi(C) = {U, M}, andBR;(R) = {U}. Also,

Player 2
L C R
Uu|22|14|4,4
Player1M | 3,3| 1,0| 1,5
D|11]05|23

Figure 11: The Best Response Game.

BR,(U) = {C, R}, BRy(M) = {R}, andBR;(D) = {C}. You should get used to thinking of the best
response correspondence as a set of strategies, one for eadnationtof the other players’ strategies.
(This is why we enclose the values of the correspondence in bracesveres there is only one element.)

The best response correspondence for a player is a function obtiieifs about what the other players
are doing. When the other players are rational in the same sense, thefeare not arbitrary: the player
must expect the others to be choosing best responses as well. Thisadlowsreate a specific solution
concept based on that definition of rationality: a Nash equilibrium is a syragegfile such that each
player’s strategy is a best response to the other players’ strategies:

DEFINITION 8 (NASH EQUILIBRIUM). The strategy profilés”,s*,) € S is apure-strategy Nash equi-
librium (PSNE) if, and only ifs € BR; (s*;) for each player € .

An equivalent useful way of defining Nash equilibrium is in terms of theoffayplayers receive from
various strategy profiles.
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DEFINITION 9. The strategy profilés’, s*,) is a PSNE if, and only ify; (s, s*,) > u;(s;, s*,) for each
playeri € 4 and each; € S;.

That is, for every player and every strategy of that player, the payoff from the profi(e;", sii) is at least
as good as the payoff from the prof(ke, sjl.) in which playeri chooses; and every other player chooses
s*;. Ina Nash equilibrium, no playérhas an incentive to choose a different strategy when everyone else
plays the strategies prescribed by the equilibrium. It is quite important to stadekthat strategy profile
is a Nash equilibrium if no player has incentive to deviate from his strategy tinagthe other players do
not deviate When examining a strategy for a candidate to be part of a Nash equilibstuateQy profile),
we always hold the strategies of all other players constant.

To understand the definition of Nash equilibrium a little better, suppose thsvenis player, for whom
s; is not a best response £0;. Then, there exists sorm,é such thami(slf, S—i) > u;(s;,s—;). Then this
(at least one) player has an incentive to deviate from the theory’'scti;gdand these strategies are not
Nash equilibrium.

Another important thing to keep in mind: Nash equilibrium is a strategy profiledifgna solution to
a game involves finding strategy profiles that meet certain rationality requitemin strict dominance
we required that none of the players’ equilibrium strategy is strictly dominditeNash equilibrium, we
require that each player’s strategy is a best response to the stratethieother players.

THE PRISONER S DILEMMA . By examining all four possible strategy profiles, we see thatD) is the
unigue Nash equilibrium (NE). It is NE because (a) given that playdrddsesD, then player 1 can do
no better than chosP himself (I > 0); and (b) given that player 1 choos8s player 2 can do no better
than choosé) himself. No other strategy profile is NE:

e (C,C) is not NE because if player 2 choosEs then player 1 can profitably deviate by choosing
D (3 > 2). Although this is enough to establish the claim, also note that the profile is né6dMNE
another sufficient reason: if player 1 choogésthen player 2 can profitably deviate by playifg
instead. (Note that it is enough to show that one player can deviate phpfiteta profile to be
eliminated.)

e (C, D) is not NE because if player 2 choosbs then player 1 can get a better payoff by choosing
D as well.

e (D, () is not NE because if player 1 choosBs then player 2 can get a better payoff by choosing
D as well.

Since this exhausts all possible strategy profilés, D) is the unique Nash equilibrium of the game. Itis
no coincidence that the Nash equilibrium is the same as the strict dominaniiereom we found before.
In fact, a player will never use a strictly dominated strategy in a Nash equitibrfeurther, if a game is
dominance solvable, then its solution is the unique Nash equilibrium.

How do we use best responses to find Nash equilibria? We proceed itefpeo Birst, we determine the
best responses of each player, and second, we find the stratéi¢gsprnere strategies are best responses
to each other.

For example, consider again the game in Fig. 11 (p. 10). We have alresatyrined the best responses
for both players, so we only need to find the profiles where each is égsbmse to the other. An easy
way to do this in the bi-matrix is by going through the list of best responsesanking the payoffs with

4There are several ways to motivate Nash equilibrium. Osborne dfferislea of social convention and Gibbons justifies it
on the basis of self-enforcing predictions. Each has its merits and theeotheers (e.g. steady state in an evolutionary game). You
should become familiar with these.

11



a "™ for the relevant player where a profile involves a best respoigris, we mark player 1's payoffs
in(U,C), (U,R), (M, L), and(M, C). We also mark player 2’s payoffs ¥/, C), (U, R), (M, R), and
(D, C). This yields the matrix in Fig. 12 (p. 12).

Player 2
L C R
U | 22 | 1%4* | 4*4*
PlayeriM | 3*3 | 1*0 | 1,5*
D| 11 | 0,5 | 23

Figure 12: The Best Response Game Marked.

There are two profiles with stars for both playgi@, C) and (U, R), which means these profiles meet
the requirements for NE. Thus, we conclude this game has two pure-gthNash equilibria.

3.1.1 Diving Money

(Osborne, 38.2) Two players have $10 to divide. Each names an iriteger < 10. If k; + k> < 10,
each getsk;. If k1 + k, > 10, then (a) ifk; < k,, player 1 gets; and player 2 get$0 — kq; (b) if
k1 > ko, player 1 getd0 — k, and player 2 getk,; and (c) ifk; = k», each player gets $5.

Instead of constructingl x 11 matrix and using the procedure above, we shall employ an alternative,
less cumbersome notation. We draw a coordinate system with 11 marks onfdhehabscissa and the
ordinate. We then identify the best responses for each player giyeof #ime 11 possible strategies of his
opponent. We mark the best responses for player 1 with a circle, anéshedsponses for player 2 with
a smaller disc.

=
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Figure 13: Best Responses in the Dividing Money Game.
Looking at the plot makes clear which strategies are mutual best regpombes game has 4 Nash

equilibria in pure strategies5, 5), (5, 6), (6, 5), and(6, 6). The payoffs in all of these are the same: each
player gets $5.
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Alternatively, we know that players never use strictly dominated strate@ibserve now that playing
any number less than 5 is strictly dominated by playing 5. To see that, suppoese, < 4. There are
several cases to consider:

o if ko <ky,thenk; + ky < 10 and player 1 get&;; if he plays 5 insteady + k> < 10 and he gets
5, which is better;

o if ko > ki andky + ko > 10 (which impliesk, > 6), then he get%; if he plays 5 instead,
5+ k, > 10 as well and sincé, > k1 he gets 5, which is better;

o if ko > k1 andk; + k» < 10, then he get&; if he plays 5 instead, then:

— if 5+ ko < 10, he gets 5, which is better;
— if 5+ k» > 10, thenk, < k3, so he also gets 5, which is better.

In other words, player 1 can guarantee itself a payoff of 5 by playiagé any of the strategies that involve
choosing a lower number give a strictly lower payoff regardless of \plater 2 chooses. A symmetric
argument for player 2 establishes tllak k, < 4 is also strictly dominated by choositg = 5. We
eliminate these strategies, which leavessa6 payoff matrix to consider (not a bad improvement, we've
gone from 121 cells to “only” 36). At this point, we can re-do the plot bstrieting it to the numbers
above 4 or we can continue the elimination. Observe khat 10 is weakly dominated by; = O:
playing 10 against 10 yields 5 but playing 9 against 10 yields 9; playingyalhat 9 yields 1, but playing
9 against 9 yields 5; playing 10 against any number between 5 and 8 yieldaitie payoff as playing 9
against that number. If we eliminate 10 because it is weakly dominated by99 ikself becomes weakly
dominated by 8 (that's because the only case where 9 gets a better paydfigwhen it's played against
10). Eliminating 9 makes 8 weakly dominated by 7, and eliminating 8 makes 7 weaklindted by 6.
At this point, we've reached a stage where no more elimination can be dbeegame is a simpl2 x 2
shown in Fig. 14 (p. 13).

$5 $6
$5|5,5|5,5
$6| 55|55

Figure 14: The Game after Elimination of Strictly and Weakly Dominated Strategies.

It should be clear from inspection that all four strategy profiles ardngsiilibria. It may appear that
IEWDS is not problematic here because we end up with the same solutionveipinfortunately) this
is not the case. Observe that once we eliminate the strictly dominated strategizs)ld have also noted
that 6 weakly dominates 5. To see this, observe that playing 5 alwayargaas a payoff of 5. Playing 6
also gives a payoff of 5 against either 5 or 6 but then gives a paf/6fagainst anything between 7 and 10.
Using this argument, we can eliminate 5. We can then apply the IEWDS as petffnting from 10 and
working our way down the list until we reach 6. At this point, we are left witmaqueprediction: (6, 6).

In other words, if we started in this way, we would have missed three of tNeEPBhis happens because
starting IEWDS at 10 eventually causes 5 to cease to be weakly dominateddow6 cannot eliminate it.
This also shows that it's quite possible to use weakly dominated strategies ishaeljailibrium (unlike
strictly dominated ones).

Still, the point should be clear even when we restrict ourselves to thelsafS: by reducing the game
from one with 121 outcomes to one with 36, can save ourselves a lot os@madiyh a little bit of thought.
Always simplify games (if you can) by finding at least strictly dominated stiesegGoing into weakly
dominated strategies may or may not be a problem, and you will have to be muehcareful there.
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Usually, it would be too dangerous to do IEWDS because you are likely toRSBEES> In this case, you
could re-do Fig. 13 (p. 12) with only; > 5 to get all four solutions.

3.1.2 The Partnership Game

There is a firm with two partners. The firm’s profit depends on the effach partner expends on the job
and is given byt (x, y) = 4(x + y + cxy), wherex is the amount of effort expended by partner 1 and
is the amount of effort expended by partner 2. Assumeithate [0, 4]. The valuec € [0, 1/4] measures
how complementary the tasks of the partners are. Partner 1 incurs a@erestx? of expending effort,
and partner 2 incurs cost. Each partner selects the level of his effort independently of the aihdr,
both do so simultaneously. Each partner seeks to maximize their share ohilsepiiofit (which is split
equally) net of the cost of effort. That is, the payoff function fortpar 1 isu;(x, y) = m(x, y)/2 — x?,
and that for partner 2 i, (x, y) = m(x, y)/2 — y2.

The strategy spaces here are continuous and we cannot constraybfampatrix. (Mathematically,
S1 = 82 = [0,4 andAS = [0,4] x [0,4].) We can, however, analyze this game using best response
functions. Lety represent some belief partner 1 has about the other partner’s éffahis case, partner
1's payoff will be2(x + § +cx ) — x2. We need to maximize this expression with respeat ¢ecall that
we are holding partner’s two strategy constant and trying to find the opteéapbnse for partner 1 to that
strategy). Taking the derivative yieldst 2¢ y — 2x. Setting the derivative to 0 and solving forields the
best responsBR; (y) = {1 + cy}. Going through the equivalent calculations for the other partner yields
his best response functi®R, () = {1 + cx}.

We are now looking for a strategy profile*, y*) such thatt* = BR;(y*) andy* = BRy(x™). (We
can use equalities here because the best response functions Bingleealues!) To find this profile, we
solve the system of equations:

x*=1+cy*
y* =1+cx*.

The solution isx* = y* = 1/(1 — ¢). Thus, this game has a unique Nash equilibrium in pure strategies,
in which both partners expend (1 — ¢) worth of effort.

3.1.3 Modified Partnership Game

Consider now a game similar to that in the preceding example. Let efforsbéted to the intervdD, 1].
Let p = 4xy, and let the personal costs lb@ndy respectively. Thusyi(x,y) =2xy —x = x(2y — 1)
andus(x,y) = y(2x — 1). We find the best response functions for partner 1 (the other one isuthe) s

If y < 1/, then, sinc€y — 1 < 0, partner 1's best response is Oylt= 1/, then2y — 1 = 0, and partner

1 can choose any level of effort. 3f > 1/, then2y — 1 > 0, so partner 1's optimal response is to choose
1. This is summarized below:

0 if y < 1/2
BRi(y) = {[0.1] ify=1h
1 if y > 1/

SinceBR, (x) is the same, we can immediately see that there are three Nash equilibria in ptegiss:
(0,0), (1, 1), and(1/2, 1/2) with payoffs(0, 0), (1, 1), and(0, 0) respectively. Let’s plot the best response
functions, just to see this result graphically in Fig. 15 (p. 15). The thisesdt the points where the best
response functions intersect represent the three pure-strateljyebiaitibria we found above.

5As | did when I improvised IEWDS in this example in class.
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0 15 1

Figure 15: Best Responses in the Modified Partnership Game.

3.2 Strict Nash Equilibrium

Consider the game in Fig. 16 (p. 15). (Its story goes like this. The setting Saht#h Pacific in 1943.
Admiral Kimura has to transport Japanese troops across the Bismardk Sewv Guinea, and Admiral
Kenney wants to bomb the transports. Kimura must choose between a $thantieern route or a longer
Southern route, and Kenney must decide where to send his planes tmlaible ftransports. If Kenney
sends the plans to the wrong route, he can recall them, but the numbsetsasfdaombing is reduced.)

Kimura

N S
N |2,-2]|2 -2
Kenney s -1 1353

Figure 16: The Battle of Bismarck Sea.

This game has a unique Nash equilibrium, in which both choose the northa (&, N). Note,
however, that if Kenney play¥, then Kimura is indifferent betweeN andS (because the advantage of
the shorter route is offset by the disadvantage of longer bombing r&tli8) the strategy profil€ N, N)
meets the requirements of NE. This equilibrium is not strict.

More generally, an equilibrium is strict if, and only if, each player has igusbest response to the
other players’ strategies:

DEFINITION 10. Astrategy profilés*, s*) is astrict Nash equilibrium if for every player, u; (s, s*;) >
u; (s;,s*;) for every strategy; # s:*.

The difference from the original definition of NE is only in the strict inequadign.
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3.3 Nash Equilibrium in Mixed Strategies

The most common example of a game with no Nash equilibrium in pure strategies &G-WMNG PENNIES,
which is given in Fig. 17 (p. 16).

Player 2
H T
1,1 | —1,1

H
Player 1
YerLr

-1,1|1,-1

Figure 17: Matching Pennies.

This is a strictly competitive (zero-sum) situation, in which the gain for one pleythe loss of the
other® This game has no Nash equilibrium in pure strategies. Let’'s consider mixgegés.

We first extend the idea of best responses to mixed strategiesBR:é—;) denote playei’s best
response correspondence when the othersgqlayThe definition of Nash equilibrium is analogous to the
pure-strategy case:

DEFINITION 11. A mixed strategy profile* is a mixed-strategy Nash equilibrium (MSNE) if, and
only if, o € BRi(0%;).

As before, a strategy profile is a Nash equilibrium whenever all plaptrategies are best responses to
each other. For a mixed strategy to be a best response, it must putgpsitiabilities only on pure strate-
gies that are best responses. Mixed strategy equilibria, like pure stieqedibria, never use dominated
strategies.

Turning now to Matching Pennies, lef = (p, 1 — p) denote a mixed strategy for player 1 where he
choosedd with probability p, andT with probability 1 — p. Similarly, leto, = (¢, 1 — ¢) denote a mixed
strategy for player 2 where she chooggsvith probabilityq, andT with probability 1 —¢. We now derive
the best response correspondence for player 1 as a function ef @laymixed strategy.

Player 1's expected payoffs from his pure strategies given plaganiXed strategy are:

Ui(H,02) = (Dg + (=D —¢q) =29 -1
Ui(T.02) = (=Dg + (D1 —¢q) = 1 =24.

Playing H is a best response if, and only if:

Ui(H,072) > Ui (T, 02)
2g—1>1-2q
q =1/

Analogously, T is a best response if, and only i, < 1/. Thus, player 1 should chooge = 1 if

g > handp = 0if ¢ < 1/. Note now that whenever = 1/, player 1 is indifferent between his
two pure strategies: choosing either one yields the same expected pa@offbus, both strategies are
best responses, which implies that any mixed strategy that includes botbnofithits support is a best
response as well. Again, the reason is that if the player is getting the sametexpayoff from his two
pure strategies, he will get the same expected payoff from any mixedgstrabese support they are.

6]t is these zero-sum games that von Neumann and Morgenstern samdiédund solutions for. However, Nash'’s solution
can be used in non-zero-sum games, and is thus far more geng -tz eful.
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Analogous calculations yield the best response correspondendayer g as a function af;. Putting
these together yields:

0 if g < 1h 0 if p>1h
BRi(9) = {[0.1] ifg=1/ BR:(p) = 1[0.1] if p=1p
1 ifg> 1h 1 if p<1h

The graphical representation of the best response corresp@sdisnia Fig. 18 (p. 17). The only place
where the randomizing strategies are best responses to each otheeitn&tisection point, where each
player randomizes between the two strategies with probaBjityThus, the Matching Pennies game has
a unique Nash equilibrium in mixed strateg(e$. o), wheres| = (1/2, 1/2), andoy = (12, 1/2). That

is, wherep = g = 1/5.

0 15 1
Figure 18: Best Responses in Matching Pennies.

As before, the alternative definition of Nash equilibrium is in terms of the fhéyoctions. We require
that no player can do better by using any other strategy than the one signube equilibrium mixed
strategy profile given that all other players stick to their mixed strategie®thier words, the player’s
expected payoff of the MSNE profile is at least as good as the expeayed pf using any other strategy.

DEFINITION 12. A mixed strategy profile* is a MSNE if, and only if, for all players,
ui(o/,0%;,) > ui(s;,0*;) forall s; € S;.

Since expected utilities are linear in the probabilities, if a player uses a rgemdeate mixed strategy in
a Nash equilibrium, then they must be indifferent between all pure strategidsch they assign positive
probability. This is why we only need to check for a profitable pure stratkgyyation. (Note that this
differs from Osborne’s definition, which involves checking againsfifable mixed strategy deviations.)
The fact that a player who is willing to mix in MSNE must be indifferent among tive gtrategies used
with positive probability raises several questions about this definitiontiminaity. First, many scholars
(myself included) are uncomfortable with the idea that players randomizetttgins. Second, even when
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players are indifferent among several pure strategies, it is uncleathely should be randomizing with
the distribution required by MSNE. Third, it appears that the other plarershoosing their strategies in
order to make the player uncertain, and so able to mix, which seems like aningdaido.

We shall have an occasion to discuss these at length later in the coursgow;d will note that it is
possible to interpret mixed strategies in a way that alleviates both concdrasdda behind MSNE is not
that a player is randomizing but that the other players cannot predict iithity what that player will
do. The player could be choosing a pure strategy — based, pertmgpstars known only to that player —
as long as the other players do not know what these factors are, that'plaehavior will appear random
to them. Their expectations about the distribution of these random actsrahelroown best responses
— if it were different, then their own behavior would change. In otherdspnobody is picking strategies
at random in a way to make others indifferent. The distribution reflects theedypncertainty necessary
to rationalize the best responses of the other players; that is, it refloatseliefs they must have about
the strategy of the player that they are uncertain about. It is now easyl&ratand why a player whose
behavior appears unpredictable to the others must be expected by thenmthfferent among the pure
strategies used with positive probability: if this were not the case, thenwariel exist a strategy that is
a best response, and the others must expect that player to choosetlitey.€annot be uncertain.

3.3.1 Battle of the Sexes

Let's model a situation where two playefse {1,2}, want to decide between two types of entertainment
to which they want to go together but the decision must be made without kngevigfdwhat the other
will do (say they are in their offices and the phones are down so theypotanommunicate beforehand).
The two available pieces of entertainment for the night are a boxing matcit) figd a ballet. For each
player then, the set of actions consists of (1) go to the fight, or (2) go tbalet. Note that the actions
are exhaustive and mutually exclusive. This means that each player bi@sitevstrategies, so the set is
called thestrategy spacéor the player.

Continuing with the example, the strategy profile then consists of one strategga¢h of the two
players. This gives us four different strategy profiles: (1) playgoés to the fight, player 2 goes to the
fight; (2) player 1 goes to the fight, player 2 goes to the ballet; (3) playee wp the ballet, player 2 goes
to the fight; and (4) player 1 goes to the ballet, player 2 goes to the ballet. lfesphcify an outcome
(strategy profile) by listing first the strategy for player 1 and then the gydta player 2. Thus, the
four outcomes above can be written as (@ight, Fight);, (2) (Fight, Ballet) (3) (Ballet, Fight) and (4)
(Ballet,Ballet)

Since each strategy profile produces a different outcome in this gamertieshas 4 possible outcomes,
in 2 of which the players go together to the same place, and 2 in which they ¢aibtdinate. Each player
has (ordinal) preferences over these four outcomes. In other weadh player ranks these outcomes
according to their desirability using some criterion. As we know, if prefegerare rational, we can
represent them numerically. Hence, we use appropriate humbers witisal ranking represents the
preferences as payoffs. Each outcome then consists of two elements splicify the payoff for each
player for this outcome. This is often called {bayoff vector

Player 1 prefers going to the fight whereas player 2 prefers going twailet! However, both prefer to
go together regardless of the type of entertainment. Their worst outconteistiwey end up alone at any
of the places and it does not matter which place they happen to be at. Tdyes, Ps preference ordering

7In the original game, player 1 was a man and player 2 was a womang Thaow a more politically-correct version of
the BoS game, calleBach or Stravinskywhich involves two sexless players deciding between concerts of myghebtwo
composers. Since any rational person with taste would clearly choa@sérSky, | find that version uninteresting.
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(F,F)>(B,B)> (F,B)~(B,F)

and player 2’'s preference ordering is:
(B,B) > (F,F) > (F,B) ~ (B, F)

Now that we have specified the ordinal rankings, we need to choosgadf flanction to represent the

orderings. Denote player 1's utility function by, and player 2’s utility function byi,. We need two
functions such that:

ul(F, F) > ul(B,B) > Ml(F, B) = ul(B,F)
Mz(B,B) > uz(F, F) > M2(F, B) = uz(B,F).

One possible and simple specification is

u1(F,F) = ux(B,B) =2
u1(B,B) = us(F, F) =1
Ml(F, B) = Ml(B,F) = uz(F, B) = Mz(B,F) =0.

A convenient way of describing the (finite) strategy spaces of the [daymd their payoff functions for
two-player games is to use a bi-matfias illustrated in Fig. 19 (p. 19).

Player 2
F B

2,100
00|12

Figure 19: Battle of the Sexes.

F
Player 1 B

Note: the Battle of the Sexes game represents a situation where players ordsiate their actions but
where they have opposed preferences over the coordinated outddimesall see two other types of co-
ordination games: pure coordination (where players only care abotdioating) and Pareto coordination
(where both strictly prefer one of the coordinated outcomes to the other).

Recall that although we call thissamultaneous-movegame, it is not necessary for players to actually
act at the same time. All that is required is that each player acts with no kngevidzbut how the other
player acts. In our BoS game, this can be achieved by requiring the playarake their choices without
having access to a communication device.

As a first step, we plot each player’s expected payoff from eacheoptine strategies as a function of
the other player's mixed strategy. Letdenote the probability that player 1 choogésand letgy denote
the probability that player 2 choosés Player 1's expected payoff frorfi is then2qg + 0(1 — g) = 24,
and his payoff fromB isOq + 1(1 —g) = 1 — q. Since2q = 1 — g whenevelg = 1/3, the two lines
intersect there.

Looking at the plot in Fig. 20 (p. 20) makes it obvious that for amy 1/3, player 1 has a unique best
response in playing the pure strateByfor ¢ > 1/3, his best response is again unique and it is the pure
strategyF, while atg = 1/3, he is indifferent between his two pure strategies, which also implies he will

8This is just like a regular matrix except each entry consists of two nunimstesad of one.

19



Ui()

2
Ui(F,q)
1
| Ui(B.q)
1 q
0 1/3 1

Figure 20: Player 1's Expected Payoffs as a Function of Player 2'ed/8trategy.

be indifferent between any mixing of them. Thus, we can specify plagdndst response (in terms pf:

0 if g <1/
BRi(q) = {[0.1] ifg=1/
1 ifg> 1/

We now do the same for the expected payoffs of player 2’s pure stratagia function of player 1's
mixed strategy. Her expected payoff frofis 1p 4+ 0(1 — p) = p and her expected payoff froB is
0p +2(1 — p) = 2(1 — p). Noting thatp = 2(1 — p) wheneverp = 2/3, we should expect that the plots
of her expected payoffs from the pure strategies will intersegt at 2/3. Indeed, Fig. 21 (p. 21) shows
that this is the case.

Looking at the plot reveals that player 2 strictly prefers playbhgvheneverp < 2/3, strictly prefers
playing F wheneverp > 2/, and is indifferent between the two (and any mixture of them) whenever
p = 2/3. This allows us to specify her best response (in termg of

0 if p < 2/3
BRy(p) = {[0.1] if p=2s
1 if p> 2/

Having derived the best response correspondences, we cangtotrttihep x ¢ space, which is done
in Fig. 22 (p. 21). The best response correspondences interséceaplaces, which means there are
three mixed strategy profiles in which the two strategies are best respafnsash other. Two of them
are in pure-strategies: the degenerate mixed strategy proéfilés and (0,0). In addition, there is one
mixed-strategy equilibrium,

((3/LF], 151B)) , (15[F]. 2/3(B])) -

In the mixed strategy equilibrium, each outcome occurs with positive probabibtgalculate the corre-
sponding probability, multiply the equilibrium probabilities of each player chmgpthe relevant action.
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Figure 21: Player 2's Expected Payoffs as a Function of Player 1'ed/8trategy.

0 2/3 1
Figure 22: Best Responses in Battle of the Sexes.

This yields P(F, F) = 2/3 x 1/3 = 2/, PAB,B) = /3 x 2/3 = 2/9, PAF,B) = 2/3 X 2/3 = 4),

and PtB, F) = /3 x 13 = 1/, Thus, player 1 and player 2 will meet with probability and fail to
coordinate with probability/s. Obviously, these probabilities have to sum up to 1. Both players’ expected
payoff from this equilibrium i92) 2/o + (1) 2/o = 2/3.

3.4 Computing Nash Equilibria

Remember that a mixed strategy is a best response to_; if, and only if, every pure strategy in the
support ofo; is itself a best response ta ;. Otherwise player would be able to improve his payoff by
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shifting probability away from any pure strategy that is not a best resptmany that is.

This further implies that in a mixed strategy Nash equilibrium, whetes a best response tg*; for
all playersi, all pure strategies in the supportaf yield the same payoff when played againg{, and
no other strategy Yyields a strictly higher payoff. We now use these rerttadkeracterize mixed strategy
equilibria.

REMARK 1. In any finite game, for every playémand a mixed strategy profite,

Ui(0) = Y 0i(si)Ui(si, 0-i).

s; €S;

That s, the player’s payoff to the mixed strategy profile is the weightechgesof his expected payoffs
to all mixed strategy profiles where he plays every one of his pure strategie a probability specified
by his mixed strategy; .

For example, returning to the BoS game, consider the strategy ptofilel/z). Player 1's expected
payoff from this strategy profile is:

Ur(Ya, 13) = (Ya) UL(F, 1/3) + (3/4) Ur(B, 1/3)
= (/) [ 13+ (0)2/3] + (/4 [(0) /3 + (1) /3]
=2/

To see that this is equivalent to computibig “directly,” observe that the outcome probabilities given this
strategy profile are shown in Fig. 23 (p. 22).

F B
F | Y12 | %112
B | 312 | %12

Figure 23: Outcome Probabilities f¢F/4, 1/3).
Using these makes computing the expected payoff very easy:
Ur(Va. 13) = Y12(2) + 212(0) + 3/12(0) + 12(1) = 8/12 = 253,

which just verifies (for our curiosity) that Remark 1 works as advertised

The property in Remark 1 allows us to check whether a mixed strategy profile égjuilibrium by
examining each player’'s expected payoffs to his pure strategies omgallRhat the definition of MSNE
| gave you is actually stated in precisely these terms.) Observe in the exaropkethhbt if player 2 uses
her equilibrium mixed strategy and choogeésvith probability 1/3, then player 1's expected payoff from
either one of his pure strategies is exactly the safie: This is what allows him to mix between them
optimally. In general, a player will be willing to randomize among pure strategilysifche is indifferent
among them.

PrROPOSITIONL. For any finite game, a mixed strategy profité is a MSNE if, and only if, for each
playeri

1. Ui(si,o*;) = Ui(sj,o*;) forall s;, 5; € suppo;*)

2. Uj(si,0*;) = Ui(sg,0X;) forall s; € supgo;*) and all s, ¢ suppo;). o
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That is, the strategy profile* is a MSNE if for every player, the payoff from any pure strategy in the
support of his mixed strategy is the same, and at least as good as théfpayoény pure strategy not
in the support of his mixed strategy when all other players play their MSNEdskategies. In other
words,if a player is randomizing in equilibrium, he must be indifferent among aié @trategies in the
support of his mixed strategyt is easy to see why this must be the case by supposing that it must not.
If he player is not indifferent, then there is at least one pure strategyeisupport of his mixed strategy
that yields a payoff strictly higher than some other pure strategy that is athe support. If the player
deviates to a mixed strategy that puts a higher probability on the pure stratggyetals a higher payoff,
he will strictly increase his expected payoff, and thus the original mixeteglyaannot be optimal; i.e. it
cannot be a strategy he uses in equilibrium.

Clearly, a Nash equilibrium that involves mixed strategies cannot be stdatise if a player is willing
to randomize in equilibrium, then he must have more than one best resporbet words, strict Nash
equilibria are always in pure strategies.

We also have a very useful result analogous to the one that states fillayapuses a strictly dominated
strategy in equilibrium. That is, a dominated strategy is never a best resfmoasy combination of mixed
strategies of the other players.

PROPOSITION2. A strictly dominated strategy is not used with positive probability in any MSNE. 5

Proof.  Suppose thafp},0*;) is MSNE ando (s1) > 0 buts; is strictly dominated by’. Suppose
first thato (s7) > 0 as well. Since both; ands] are used with positive probability in MSNE, it follows
thatUi (s1,0%;) = Uy (51, o*;), which contradicts the fact thaf strictly dominates;. Suppose now that
o7 (s7) = 0 but then MSNE implies thal/; (s;,0*;) > U;(s}.0;), which also contradicts the fact that
s} strictly dominates. .

This means that when we are looking for mixed strategy equilibria, we can eterfnoan consideration
all strictly dominated strategies. It is important to note that, as in the case obfategiesywe cannot
eliminate weakly dominated strategies from consideratiben finding mixed strategy equilibria (because
a weakly dominated strategyanbe used with positive probability in a MSNE).

3.4.1 Myerson’s Card Game
Consider the following game from Roger Myerson.

EXAMPLE 1. (MYERSON S CARD GAME.) There are two players, labeled “player 1" and “playef 24t the beginning of
this game, each player puts a dollar in a pot. Next, player 1 draws a cancafshuffled deck of cards in which half the cards are
red and half are black. Player 1 looks at his card privately and degidether to raise or fold. If player 1 folds, then he shows
his card to player 2 and the game ends; player 1 takes the money in thetpotérd is red, but player 2 takes the money if the
card is black. If player 1 raises, then he adds another dollar to the dagtlaper 2 must decide whether meet or pass. If she
passes, the game ends and player 1 takes all the money in the pot. Iéstss she puts another dollar in the pot, and then player
1 shows his card to player 2 and the game ends; if the card is red, pléalezslall the money in the pot, but if it is black, player
2 takes all the money.

The extensive form of this game is in Fig. 24 (p. 24).

Let us convert this to strategic form. von Neumann and Morgensterrestegtja procedure for simplify-
ing games in extensive form by constructing the strategic f6rof anyI". This is done in an algorithmic
way. First, we find all pure strategies for the players. Next, we cortsiinecexpected outcomes for all

9We establish the following convention: odd-numbered players are nmail@\w@n-numbered players are female. For a generic
player, we shall always use the generic male pronoun.
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-2,2 1,-1 2,2 1,—1
Figure 24: Myerson’s Card Game: Extensive Form.

strategy profiles. Finally, we redefine the utility functions on the outcomes tdilitg functions on the
profiles with expected outcomes.

Consider the following scenario. The two players are going to play this tawand today they have
to plan their moves in advance. Player 1 does not know the color that herawilllwit he can condition his
strategy on the card color because he knows that he will see it befoosiolg whether to raise or fold. As
we have seen, he has four pure strategiges= {Rr, Rf, Fr, Ff}. Player 2, on the other hand, will only
ever get to move if player 1 raises, so her pure strategieS,ate {m, p}. The strategy profiles are:

§ = 81 x 82 = 1 (Rr,m) . (Rr, p) . (Rf.m) .(Rf. p) . (Fr.m) . (Fr,p),(Ff.m).(Ff.p) (.

We now have to define the expected utility functions for the player. Recalbtiginally, we defined the
utility functions directly in terms of the outcome. However, even if we knew hérieh strategy profile
will be realized (that is, what strategy each player has chosen), wetpredict the actual outcome of
the game because it will depend on the color of the card, which is a chanee fFar example, suppose
player 1 has chosen the stratefjy and player 2 has chosen and so the strategy profile {&'r, m). The
outcome will be folding by player 1 if the card is black, and raising by playemnd meeting by player 2 if
the card is red. Player 1's payoff will bel if the card is black, and if the card is red.

So what payoff should player 1 expect from the profite-, m)? Its expected payoff, of course. Choos-
ing the strategyF'r given that player 2 will be choosing is equivalent to choosing a lottery, in which
player 1 would get-1 with probability 0.5, and2 with probability 0.5. We know how to compute the
expected utility in this case:

Ui(Fr,m) = 1 xuj(black F) 4+ 1 xuy(red r,m) = 1 x (—1) + 1 x (2) = 0.5.
In analogous manner, we would compute player 2’s expected payoff:
Uy(Fr,m) = 1 xup(black F) + 1 x us(red r,m) = 1 x (1) 4+ 1 x (=2) = —0.5.

Continuing in this way, we define the expected utility functions for the two ptagerall strategy profiles,
and arrive the the normal form representation of this game of uncertdiatyrsin Fig. 25 (p. 25).

The strategic game in Fig. 25 (p. 25) describes how the utilities of the plagpend on the strategies
they chooseat the beginning of the gameWe know from our expected utility theorem that a player
would choose the strategy that yields the highest expected payoffdeetidia would be consistent with
his preferences. In other words, players will make choices that maxineresttpected payoff.

In general, given any extensive form garigits normal form representatioé can be constructed as
follows. The set of players remains the same. For any playerd, let the set of strategie§; in the

24



Player 2

m P
Rr[ 0.0 -1
Rf [<05,05| 1,—1

Player 1 ’ :

e [05.-05] 0.0
Ff 0.0 0.0

Figure 25: The Strategic Form of the Game from Fig. 24 (p. 24).

normal form game be the same as the set of strategies in the extensive twramyfstrategy profile € S

and any node in the tree ofl", define P(x|s) to be the probability that the path of play will go through
nodex, when the path of play starts at the initial node, and at any decision node jrath, the next node

is determined by the relevant player’s strategy,iand, at any node where nature moves, the next node is
determined by the probability distribution givenlin At any terminal node € Z, letu;(z) be playeri’'s
payoff from outcome;. Then, for any strategy profilee S and anyi € J, letU; (s) be:

Ui(s) = ) P(zls)ui(2).

zZ€Z

That is,U; (s) is playeri’s expected utility if all players implement the strategies according b G is
derived fromI" in this way, it is called thetrategic (normal) form representationof I".

The first step in solving for Nash equilibrium (either in pure or mixed stras¢ghould always be
the elimination of any strictly dominated strategies. In this game, no pure stratetfictyy dominated
by another pure strategy. However, the strategy= Ff is strictly dominated by the mixed strategy
o1 = (0.5)[Rr] + (0.5)[Fr]:

Ui (o1, m) = (0.5)(0) + (0.5)(0.5) = 0.25 > 0 = Uy (s1,m)
Ui(o1. p) = (0.5)(1) + (0.5)(0) = 0.5 > 0 = Uy (s1. p).

In other words, playingr; yields a higher expected payoff thapndoes against any possible strategy for
player 2. Therefores; is strictly dominated by, and we should not expect player 1 to pkgy On the
other hand, the strategyr only weakly dominate$’'f because it yields a strictly better payoff agaimst
but the same payoff againgt'®

In general, ifg; strictly dominates; anda; (s;) = 0, then we can eliminate. Note that in addition to
strict dominance, we also require that the strictly dominant mixed strategynassigo probability to the
strictly dominated pure strategy before we can eliminate that pure strategyed@son for that should be
clear: if this were not the case, then we would be eliminating a pure strateggp witked strategy, which
assumes that this pure strategy would actually be played. Of course, Ifmiaate s;, then this can no
longer be the case—we are, in effect, eliminating all mixed strategies thathiasmeir supports as well.

After eliminating F /', we end up with the reduced strategic form of the game:

It is clear by inspection that this game has no PSNE, so let’s look for one indrsixategies. Lef
denote the probability with which player 2 choogesandl — ¢ be the probability with which she chooses
». We now show that in equilibrium player 1 would not pl&y with positive probability:?

10How did we know to try this mixed strategy? Notice thaf is weakly dominated by r and Rr, and strictly dominated
by Fr againstn and byRr againstp. This means that mixing (in any way, actually) betweg@&nand Rr would yield a strictly
higher payoff against either or p.

11How do we know to show that? Even though one cannot safely eliminatelyvéaiinated strategies from consideration
for inclusion in Nash equilibrium, they often can be eliminated with equilibriuasoming. That is, by supposing that they are
being used with positive probability and finding a contradiction in the assumhtad the strategy is a best response. Sometimes
this exercise allows us to eliminate weakly dominated strategies, and somititnes not. Here, it does.
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Player 2
m P
Rr 0,0 1,—1
Player 1 Rf | —1h, 1/ 1,—1
Fr | 1, =1/ 0,0

Figure 26: Myerson’s Card Game: Reduced Strategic Form.

Suppose that[(Rf) > 0; that is, player 1 use®f in some MSNE. There are now three possi-
ble mixtures that could involve this: (i) su@g’) = {Rr, Rf. Fr}, (i) supplo;) = {Rr, Rf}, or (iii)
supfo;) ={Rf, Fr}.

Let’s take (i) and (i), in whicho{(Rr) > 0 as well. Since player 1 is willing to mix in equilibrium
between (at least) these two pure strategies, it follows that his expegteffl gaould be the same no matter
which one of them he uses. The expected payoff fdfis U1 (Rf,q) = (—12)g+(1)(1—¢q) = 1— %q,
and the expected payoff froRr is Ui (Rr,q) = (0)g + (1)(1 —g) = 1 — g. In MSNE, these two have
to be equal, sd — %q = 1 — ¢, which implies5/»g = 0, org = 0. Hence, in any MSNE in which player
1 puts positive probability on botR f and Rr requires thaty = 0; that is, that player 2 chooseswith
certainty. This makes intuitive sense, which we can verify by looking at flyefp matrix. Observe that
both Rr andR f give player 1 a payoff of 1 againgtbut thatR f is strictly worse against. This implies
that should player 2 chooge with positive probability, player 1 will strictly prefer to plagr. Therefore,
player 1 would be willing to randomize between these two pure strategies oy is expected to
choosep for sure.

Given that behavior for player 2, player 1 will never put positive atality on F'r because conditional
on player 2 choosing, Rr andR f strictly dominate it. In other words, case (i) cannot happen in MSNE.

We now know that if player 1 use®r and R /', he can only do so in case (ii). But if player 1 is certain
not to chooseF r, thenm strictly dominates for player 2: Uz (o1, m) = 1ho1(Rf) > —1 = Uz (o1, p)
for any strategy in (ii). This now implies that = 1 because player 2 is certain to choaese But this
contradicts; = 0 which we found has to hold for any equilibrium mixed strategy that puts pesitaight
on bothRr andR f. Hence, it cannot be the case that player 1 plays (ii) in MSNE either.

This leaves one last possibility to consider, so suppose he puts posibiveliity on Rf and F'r.
Since he is willing to mix, it has to be the case that R f, o)) = U (Fr,o05). We know that the expected
payoffs areU(Rf,05) = —lpq + (1 —q) = g = Ui(Fr,o05), which impliesg = 1/. That is, if
player 1's equilibrium mixed strategy is of type (iii), then player 2 must mix Hgraad she must do so
precisely with probabilityl 2. However, this now implies thdl'; (Rf, 1/2) = 1/a < 1 = Ui(Rr, 1/).
That is, player 1's expected payoff from the stratéy, which he is not supposed to be using, is strictly
higher than the payoff from the pure strategies in the support of the misedgy. This means that player
1 will switch to Rr, which implies that case (iii) cannot occur in MSNE either. We conclude tleaeth
exists no MSNE in which player 1 puts positive probability By .

In this particular case, you can also observe Ratstrictly dominatesk f* for any mixed strategy for
player 2 that assigns positive probabilityzto Since we know that player 2 must mix in equilibrium, it
follows that player 1 will never play f* with positive probability in any equilibrium. Thus, we can elimi-
nate that strategy. Note that although weakly dominate® /', this is not why we eliminat® /. Instead,
we are making an equilibrium argument and proving R#atwill never be chosen in any equilibrium with
positive probability.

So, any Nash equilibrium must involve player 1 mixing betwéenand Fr. Since he will never play
R in equilibrium, we can eliminate this strategy from consideration altogether, leasinth the simple
2 x 2 game shown in Fig. 27 (p. 27). Letbe the probability of choosingr, and1l — s be the probability
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of choosingFr.

Player 2

UL p
0,0 1,—1
Yo.=1a| 0.0

Figure 27: Myerson’s Card Game: Further Reduction after EquilibriuasBeing.

Rr
Player 1
y Fr

We do not have to worry about partially mixed strategies: since each glagenly two pure strategies
each, any mixture must be complete. Hence, we only need equate thesptayéiffd the equilibrium
mixing probabilities. Because player 1 is willing to mix, the expected payoffa fte two pure strategies
must be equal. Thug0)g + (1)(1 — ¢q) = /g + (0)(1 — g), which implies thay = 2/3. Since player
2 must be willing to randomize as well, her expected payoffs from the puategtes must also be equal.
Thus,(0)s + —1/4(1 —s) = (—1)s + (0)(1 — s), which implies that = 1/3. We conclude that the unique
mixed strategy Nash equilibrium of the card game: is

((of (Rr) = 13.07 (Fr) = 23) . (05 (m) = 2/3.05(p) = 1/3)).

That is, player 1 raises for sure if he has a red (winning) card, dasdsravith probabilityl/s if he has a
black (losing) card. Player 2 meets with probabify when she sees player 1 raise in equilibrium. The
expected payoff in this unique equilibrium for player 1 is:

(12) [2/3(2) + 1/3(D] + (12) [1/3(2/3(=2) + 1/3(1)) + 2/3(=D)] = 1/5,

and the expected payoff for player 2, computed analogouslyljs. Of course, we could have simply
exploited the fact that in MSNE all pure strategies yield the same expecteff pagbtain:

U =Ui(Rr) =05(p) =15 and U = Ux(p) = —of(Rr) = —1/3.

If you are risk-neutral, you should only agree to take player 2’s roléf@red a pre-play bribe of at least
$0.34 because you expect to lose $0.33.

Let’s think a bit about the intuition behind this MSNE. First, note that playemZicameet or pass with
certainty in any equilibrium. If she passed whenever player 1 raisedpthger 1 would raise even when
he has a losing card. But if that’s true, then raising would not tell playeryehang about the color of the
card, and so she expects a 50-50 chance to win if she meets. With thessleld better off meeting: her
expected payoff would be 0 if she meets (50% chance of winning $2 &@tbbdsing the same amount).
Passing, on the other hand, guarantees her a payeff.obf course, if she met with certainty, then player
1 would never raise if he has the losing card. This now means that whepleyer 1 raises, player 2
would be certain that he has the winning card, but in this case she suoeilg stot meet: passing is much
better with a payoff of-1 versus a truly bad loss ef2. So it has got to be the case that player 2 mixes.

Second, we have seen that player 1 cannot raise without regardfoolibr of the card in any equilib-
rium: if he did that, player 2 would meet with certainty, but in that case it is betfetdavith a losing card.
Conversely, player 1 cannot fold regardless of the color becaus®tier what player 2 does, raising with
a winning card is always better. Hence, we conclude that player 1 msestioa sure if he has the winning
card. But to figure out the probability with which he must bluff, we need toutate the probability with
which player 2 will meet a raise. It is these two probabilities that the MSNE pingd

Intuitively, upon seeing player 1 raise, player 2 would still be unsuretthe color of the card, although
she would have an updated estimate of that probability of winning. She sheatdne more pessimistic
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if player 1 raises with a strictly higher probability on a winning card. Henbe, would use this new
probability of victory to decide her mixture. Bayes Rule will give you prdgisieis updated probability:

Pr1 raise¢blacK x Prblack
Pr{1 raisefblack x Priblack + Pr{1 raisesred x Prred
_ o1(Rr) (1/2) _ (13) ()
—oi(Rr) (V2) + (1) (Vo) (13) (1) + (1) (1)
= 1.

In other words, upon seeing player 1 raise, player 2 revises healpifity of winning (the card being
black) from 1/, down to /4. Given this probability, what should her best response be? The tetbec
payoff from meeting under these new oddsis(2) + 3/2(—2) = —1, which is the same as her payoff
from passing. This should not be surprising: player 1's mixing probalmiiigt be making her indifferent
if she is willing to mix. For her part, she must choose the mixture that makes playdling to mix
between his two pure strategies, and this mixture is to meet with probabiitiyrhat is,player 1's mixed
strategy makes player 2 indifferent, which is required if she is to mix in equifibr Conversely, her
strategy must be making player 1 indifferent between his pure strategiésg is willing to mix too.

It is important to note that player 1 is not mixiingorderto make player 2 indifferent between meeting
and passing: instead this isemture(or requirement) of optimal play. To see that, suppose that his strategy
did not make her indifferent, then she would either meet or pass fordepending on which one is better
for her. But as we have just seen, playing a pure-strategy canraytheal because of the effect it will
have on player 1's behavior. Therefore, optimality itself requires thatepld's behavior will make her
indifferent. In other words, players are not looking to enure that thgiroaents are indifferent so that
they would play the appropriate mixed strategy. Rather, their own effortsd@fi optimal strategy render
their opponents indiffererg

By the way, you have just solved an incomplete information signaling @me! Recall that in the
original description, player 1 sees the color of the card (so he is pviat®rmed about it) and can
“signal” this to player 2 through his behavior. Observe that his action deesal some, but not all,
information: after seeing him raise, player 2 updates to believe that hlealpility of winning is worse
than random chance. We shall see this game again when we solve moregjamcesnplete information
and we shall find this MSNE is also the perfect Bayesian equilibrium. Foy a@f’'t you glad that on the
first day you learn what a Nash equilibrium is, you get to solve a signalingegvhich most introductory
classes wouldn’t even teach?

Prblack1 raise$ =

3.4.2 Another Simple Game

To illustrate the algorithm for solving strategic form games, we now go thraudgtailed example using
the game from Myerson, p. 101, reproduced in Fig. 28 (p. 29). Thweithgn for finding all Nash equilibria

12This does not mean that there isn't a philosophical problem here: if/@ipisindifferent among several pure strategies, then
there appears to be no compelling reason to expect him to choose thg (gghilibrium) mixture that would rationalize his
opponent’s strategy. Clearly, any deviation from the equilibrium mixtureotbe supported if the other player guesses it—she
will simply best-respond by playing the strategy that becomes betterfof hat's why any other non-equilibrium mixture cannot
be supported as a part of equilibrium: if it were a part of equilibrium, theropponent will know it and expect it, but if this were
true, she will readjust her play accordingly. The question is: if a playedi§erent among his pure strategies, then how would
his opponent guess which “deviating” mixture he may choose? This isadly a problem in a single-shot encounter when the
indifferent player may simply pick a mixture at random (or even ch@opare strategy directly); after all, he is indifferent. In
that case, there may be no compelling reason to expect behaviorsbatlkes Nash equilibrium. Pure-strategy Nash equilibria,
especially the strict ones, are more compelling in that respect. Howeaesanyi’s purification argument (which | mentioned
in class but which we shall see in action soon) gets neatly around this praigleause in that interpretation, there is no actual
randomization.

28



involves (a) checking for solutions in pure strategies, and (b) chedkingplutions in mixed strategies.
Step (b) is usually the more complicated one, especially when there are nranstraiegies to consider.
You will need to make various guesses, use insights from dominance awtgjrard utilize the remarks
about optimal mixed strategies here.

Player 2
L M R
U|72]27]36
D |2,7|72]|4,5

Player 1

Figure 28: A Strategic Form Game.

We begin by looking for pure-strategy equilibrié. is only a best response o, but the best response
to U is M. There is no pure-strategy equilibrium involving player 1 choodihgOn the other hand,
D is a best response to bo# and R. However, onlyL is a best response tb. Therefore, there is
no pure-strategy equilibrium with player 1 choosifgfor sure. This means that any equilibrium must
involve a mixed strategy for player 1 with supp) = {U, D}. In other words, player 1 must mix in any
equilibrium. Turning now to player 2's strategy, we note that there can begooibrium with player 2
choosing a pure strategy either. This is because player 1 has a un&iuedmonse to each of her three
strategies, but we have just seen that player 1 must be randomizing in quilib

We now have to make various guesses about the support of playdreagy. We know that it must
include at least two of her pure strategies, and perhaps all threee &teefour possibilities to try.

e supfoz) = {L, M, R}. Since player 2 is willing to mix, she must be indifferent between her pure
strategies, and therefore:

201(U) 4 7o1(D) = 701 (U) 4 201(D) = 601(U) + 501(D).

We require that the mixture is a valid probability distributionge(U) + o1 (D) = 1. Note now that
201(U)+70’1(D) = 701(U)—|—20’1(D) = Ul(U) = O’1(D) = 1/2. HOWGVGI',701(U)—|-20'1(D) =
601(U) + 501(D) = 01(U) = 301(D), a contradiction. Therefore, there can be no equilibrium
that includes all three of player 2's strategies in the support of her mixagy.

e SUpfoz) = {M, R}. Since player 1 is willing to mix, it must be the case theg (M) + 302(R) =
To(M) +402(R) = 0 = 502(M) + 02(R), which is clearly impossible because bot{M) > 0
andos(R) > 0. Hence, there can be no equilibrium where player 2's support congigdfsand R.
(You can also see this by inspecting the payoff matrix: if player 2 is choasihgbetweenM and
R, then D strictly dominated/ for player 1. This means that player 1's best response wilD izt
we already know that he must be mixing, a contradiction.)

e supfoz2) = {L,M}. Because player 1 is willing to mix, it follows th&v,(L) + 202(M) =
205(L) + 702(M) = 02(L) = 02(M) = 1/. Further, because player 2 is willing to mix, it
follows that2o,(U) + 701(D) = 701(U) + 201(D) = 01(U) = 01(D) = 1/5.

So far so good. We now check for profitable deviations. If player 1 @osimg each strategy
with positive probability, then choosing would yield player 2 an expected payoff 0¥>)(6) +
(12)(5) = 11/5. Thus must be worse than any of the strategies in the support of her niizehy,
so let’'s checkM . Her expected payoff fromM is (14)(7) + (1/2)(2) = °/h. That is, the strategy

L3alternatively, you could simply observe that if player 2 never chodseafenD strictly dominated/ for player 1. But if he
is certain to choos®, then player 2 strictly prefers to play, a contradiction.
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which she is sure not to play yields an expected payoff strictly higher thamithe strategies in
the support of her mixed strategy. Therefore, this cannot be an equitilgither.

e SUpfoz) = {L, R}. Since player 1 is willing to mix, it follows th&to, (L) + 302(R) = 202(L) +
405(R) = 50,2(L) = 02(R), which in turn implieso, (L) = 1/s, ando,(R) = 5/6. Further, since
player 2 is willing to mix, it follows thato;(U) + 701(D) = 601(U) + 501(D) = 01(D) =
201(U), which in turn impliess; (U) = 1/3, ando (D) = 2/5.

Can player 2 do better by choosirid? Her expected payoff would b@/)(7) + (2/3)(2) =
11/3, Any of the pure strategies in the support of her mixed strategy yields pected payoff of
(13)(2) + (2/3)(7) = (1/3)(6) + (2/3)(5) = 16/3, which is strictly better. Therefore, the mixed
strategy profile:

((01(U) = 1/3,01(D) = 2/3),(02(L) = /6,02(R) = 3/6))

is the unique Nash equilibrium of this game. The expected equilibrium pagafs /3 for player 1
and 16/ for player 2.

This exhaustive search for equilibria may become impractical when the dasseme larger (either
more players or more strategies per player). There are programs, lilkegeatitichard McKelvey'ssambit
that can search for solutions to many games.

3.4.3 Choosing Numbers

Players 1 and 2 each choose a positive integer up.td@ hus, the strategy spaces are bgtle, ..., K}.
If the players choose the same number then player 2 pays $1 to playeefwisthno payment is made.
Each player’'s preferences are represented by his expected nyopayaif. The claim is that the game
has a mixed strategy Nash equilibrium in which each player chooses eaitivgpmteger with equal
probability14

It is easy to see that this game has no equilibrium in pure strategies: If thegsgtofile specifies the
same numbers, then player 2 can profitably deviate to any other numberstiréitegy profile specifies
different numbers, then player 1 can profitably deviate to the number ldgr® is naming. However,
this is a finite game, so Nash’s Theorem tells us there must be an equilibriurs, Waknow we should
be looking for one in mixed strategies.

The problem here is that there is an infinite number of potential mixtures vestb@onsider. We attack
this problem methodically by looking at types of mixtures instead of individnako

Let us conjecture that players must put positive probability on eachij@ssumber in equilibrium.
Suppose, to the contrary, that player 1 does not play some number, wéh positive probability. Then
player 2's best response is to playor sure, so she will not mix. However, given that she will chogse
for sure, player 1 is certain to deviate and pfafor sure himself. Therefore, player 1 must put positive
probability on all numbers. But if player 1 mixes over all numbers, then sd pilager 2. To see this,
suppose to the contrary that she does not and instead plays some raagbewith probability zero. But
then player 1 can do strictly better by redistributing the positive weight hehattatoy to the numbers
which player 2 chooses with positive probability, a contradiction to the fattayer 1 must mix over all
numbers in equilibrium. Therefore, both players must mix over all numbers.

OK, so the probability distribution has full support. But what is the equilibriistribution? Since
players are mixing, they must be indifferent among their pure strategies. ofily way player 1 will

141t is not clear how you get to this claim. This is the part of game theory theh sequires some inspired guesswork and is
usually the hardest part. Once you have an idea about an equilibriuncayocheck whether the profile is one. There is usually
no mechanical way of finding an equilibrium.
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be indifferent among his choices is when player 2 chooses each numbwes gupport of her mixed

strategy with the same probability. If that were not true and she chose sonteens with high probability,

then playing these numbers would give player 1 an expected payoffrhiggne playing any of the other
numbers, a contradiction of the equilibrium supposition. If player 1 himselfetsome numbers with
higher probability, then choosing any numbers other than these woul@lgiyer 2 a strictly better payoff,
a contradiction too. Hence, both players must randomize over all numbérthay must assign equal
probabilities to them. There is only one way to do this: they pick each number waitapility 1/k.

Let's verify that this is MSNE by applying Proposition 1. Since all strategresim the support of
this mixed strategy, it is sufficient to show that each strategy of each plagelts in the same expected
payoff. (That is, we only use the first part of the proposition.) Playeedpected payoff from each pure
strategy isl/k(1) + (1 — 1/k) (0) = 1/k because player 2 chooses the same number with probability
1/k and a different number with the complementary probability. Similarly, playee@¥cted payoff is
/g(—1) 4+ (1 — 1/k) (0) = —1/k. Thus, this strategy profile is a mixed strategy Nash equilibrium.

3.4.4 Defending Territory

General A is defending territory accessible by 2 mountain passes agsnstal B. General A has 3
divisions at his disposal and B has 2. Each must allocate divisions betivedwo passes. A wins the
pass if he allocates at least as many divisions to it as B does. A sudbedsfands his territory if he wins
at both passes.

General A has four strategies at his disposal, depending on the nufrhieismns he allocates to each
pass:S4 = {(3,0), (2,1),(1,2), (0,3)}. General B has three strategies he can Sge= {(2,0), (1, 1), (0,2)}.
We construct the payoff matrix as shown in Fig. 29 (p. 31).

General B
(2,00 (d,1) (0,2)
3,00 1,—-1 ] —-1,1| —-1,1
2,) [ 1,-1|1,-1 | —1,1
GeneraIA( ’ J 2 2
1,2 | 1,1 |1,-1|1,-1
©0,3) | —1,1 | —-1,1 | 1,—1

Figure 29: Defending Territory.

This is a strictly competitive game, which (not surprisingly) has no pure gydiash equilibrium.
Thus, we shall be looking for MSNE. Denote a mixed strategy of Genela} 8p1, p2, p3, p4), and a
mixed strategy of General B ly1, ¢2. ¢3).

First, suppose that in equilibriugy > 0. Since General As expected payoff from his strategie9)
and (0, 3) are both less than any of the other two strategies, it follows that in suchulibegm p; =
p4 = 0. In this case, General B’s expected payoff to his stratégy) is then—1. However, either one of
the other two available strategies would yield a higher expected payoffeftine,q, > 0 cannot occur in
equilibrium.

What is the intuition behind this result? Observe that the stratégly involves General B dividing
his forces and sending one division to each pass. However, this woaldeeGeneral A to defeat both of
them for sure: he would send 2 divisions to one pass, and 1 division wmthiee That is, he would play
either(2, 1) or (1, 2) but in either case, General B would lose for sure. Given that at leastfthe passes
will be defended by 1 division, General B would do strictly better by attagkirpass in full force: he
would lose if he happens to attack the pass defended by 2 divisions hid win if he happens to attack
the pass defended by a single division. Thus, he would deviate frontrftegy(1, 1), so it cannot occur
in equilibrium.
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We conclude that in equilibrium General B must attack in full force one optsses. Note now that he
must not allow General A to guess which pass will be attack in that way. iilyen@y to do so is to attack
each with the same probability. If this were not the case and General Bedtadk of the passes with a
higher probability, then General A's best response would be to defetighass with at least 2 divisions for
sure. But then General B would strictly prefer to attack the other passce;lén equilibrium it has to be
the case that General B attacks both passes with probapility g, = 1/>.

Continuing with this logic, since General A now expects a full-scale attackach pass with equal
probability, he knows for sure that he will lose the war with probabiljpy This is so because there is no
way to defend both passes simultaneously against a full-scale attackllddatians(3, 0) and(2, 1) leave
the second pass vulnerable if General B happens to choose it, and tatialis(1, 2) and(0, 3) leave the
first pass vulnerable. Hence, General A's best bet is to chooseeetiiese two combinations with equal
probability. That is, he can defend successfully the first pass anthesecond with the allocatioi3, 0)
and(2, 1), and defend successfully the second pass and lose the first with thetiatha¢1, 2) and(0, 3).
Using our notation, his strategy would be to pley+ p2 = p3 + pa = /.

This, however, is not enough to pin down equilibrium strategies. Obsleatéf General A plays0, 3)
and(3, 0) with high probabilities, then General B can attempt to split his forces: doingpsdd give him
an opportunity to sneak 1 division through an undefended pass. Batresdy know that1, 1) cannot
be an equilibrium strategy. This implies that in equilibrium General A must not déKkely to leave a
pass undefended. Since, as we have seen, General B will launtifsedie attack on each of the passes
with equal probability, his expected payoff is 0: given General Astega he will win with probability
1/, and lose with probabilityl/>. Dividing his forces should not improve upon that expectation. This will
be so if the overall probability of General A leaving a pass undefended reater thari/,. That is,
p1 + pa < lh. If that were not so, then General B would divide his forces and win pitibability
greater than'/2, a contradiction to the equilibrium supposition that he is equally likely to win anel los
Thus, we conclude that the game has infinitely many MSNE. In all of theser@ld® attacks each of the
passes in full strength with equal probability; = g3 = /. General A, on the other hand is equally
likely to prevail at either pass»; + p2 = p3 + pa = /2, and not too likely to leave a pass undefended:
p1+ pa < 1.

More formally, given that in any equilibrium, = 0, what probabilities would B assign to the other
two strategies in equilibrium? Singg = 0, it follows thatgs = 1 — g;. General A's expected payoff
to (3,0) and(2,1) is 2¢1 — 1, and the payoff tq1,2) and(0,3) is 1 — 2¢;. If g1 < 1/, then in any
equilibrium p; = p, = 0. In this case, B has a unigue best response, whi¢h ), which implies that
in equilibriumg; = 1. But if this is the case, then either of A's strategi@s0) or (2, 1) yields a higher
payoff than any of the other two, contradictipg = p» = 0. Thus,q < 1/ cannot occur in equilibrium.
Similarly, g; > 1/> cannot occur in equilibrium. This leaves = g3 = 1/> to consider.

If g1 = g3 = 1/2, then General A's expected payoffs to all his strategies are equal.oWeéave to
check whether General B’s payoffs from this profile meet the requinésraf Proposition 1. That is, we
have to check whether the payoffs frq@ 0) and(0, 2) are the same, and whether this payoff is at least
as good as the one {a, 1). The first condition is:

—p1—p2+p3+ ps=p1+p2—p3— p4
p1+p2=p3+ps=1p

General B’s expected payoff t@, 0) and(0, 2) is then 0, so the first condition is met. Note now that since
p1+ p2+ p3+ pa = 1,we havel — (p1 + pa) = p2 + p3. The second condition is:

pP1—p2—p3+pa=<0
P1+ pa =< p2+ p3
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p1+ pa < 1—(p1+ pa)
P11+ pa=<1p

Thus, we conclude that the set of mixed strategy Nash equilibria in this gameesettbf strategy profiles:

((p1. V2= p1. Y2 — pa. pa). (1/2,0, 1/2)) wherepy + ps < 1/2.

This, of course, is precisely what we found with less algebra abowvet tf@ algebra does make it very
easy.)

3.4.5 Choosing Two-Thirds of the Average

(Osborne, 34.1) Each of 3 players announces an integer fronKl tb the three integers are different,
the one whose integer is closest3 of the average of the three wins $1. If two or more integers are the
same, $1 is split equally between the people whose integers are clogésvtthe average.

Formally, N = {1,2,3},S; = {1,2,..., K}, andAS = S; x S, x S3. There arek? different strategy
profiles to examine, so instead we analyygesof profiles.

Suppose all three players announce the same nuknbe2. Then?2/; of the average i$/3k, and each
gets $/3. Suppose now one of the players deviatek tol. Now 2/3 of the average i8/3k — 2/9. We now
wish to show that the player with— 1 is closer to the new#/3 of the average than the two whose integers
wherek:

3k = 2fo —(k = 1) <k —(?/3k = 2)o)
k > 5/5

Sincek > 2, the inequality is always true. Therefore, the player with 1 is closer, and thus he can get
the entire $. We conclude that for ang > 2, the profile(k, k, k) cannot be a Nash equilibrium.

The strategy profilél, 1, 1), on the other hand, is NE. (Note that the above inequality works just fine
for k = 1. However, since we cannot chodseas the integer, it is not possible to undercut the other two
players with a smaller number.)

We now consider an strategy profile where not all three integers arauhe. §-irst consider a profile,
in which one player names a highest integer. Denote an arbitrary sufile o (k*, k1, k»), wherek*
is the highest integer andy > k,. Two thirds of the average for this profileas= 2/o(k* + k1 + k»).

If ky > a, thenk* is further froma thank;, and therefor&™* does not win anything. lk; < a, then
the difference betweeh™ anda isk* —a = 7/ok™ — 2/ok1 — 2/ok,. The difference betweely anda is
a —ky = 2/ok™ — 7ok1 + 2/ok,. The difference between the two is the&hk™* + 5/0k; — 4/ok, > 0, SO
k1 is closer toa. Thusk™* does not win and the player who offers it is better off by deviatingt@nd
sharing the prize. Thus, no profile in which one player names a highegeimtan be Nash equilibrium.

Consider now a profile in which two players name highest integers. Dernistprtifile by (k*, k*, k)
with k* > k. Thena = 4ok * 4+ 2/9k. The midpoint of the difference betwegii andk is 1/x(k* +k) > a.
Thereforek is closer taz and wins the entire  Either of the two other players can deviate by switching
to k and thus share the prize. Thus, no such profile can be Nash equilibrium.

This exhausts all possible strategy profiles. We conclude that this ganaeumague Nash equilibrium,
in which all three players announce the integer 1.

3.4.6 \oting for Candidates

(Osborne, 34.2) There arevoters, of whichk support candidate A anet = n — k support candidate
B. Each voter can either vote for his preferred candidate or abstath \Eder gets a payoff of 2 if his
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preferred candidate wins, 1 if the candidates tie, and 0 if his candidate lb#lee citizen votes, he pays a
costc € (0, 1).

(a) What is the game witle = k = 1?

(b) Find the pure-strategy Nash equilibria foe= m.

(c) Find the pure-strategy Nash equilibria fok m.
We tackle each partin turn:

(a) Let’s draw the bi-matrix for the two voters who can either (V)ote or §8m. This is depicted in
Fig. 30 (p. 34).

B Supporter

V A
l—c,1—c 2—1¢,0

0,2—c 1,1

A Supporterz

Figure 30: The Election Game with Two Voters.

Since0 < ¢ < 1, this game is exactly like the Prisoners’ Dilemma: both citizens vote and the
candidates tie.

(b) Here, we need to consider several cases. (Keep in mind that @aadidate has an equal number of
supporters.) Let4 < k denote the number of citizens who vote for A andrigt < m denote the
number of citizens who vote for B. We restrict our attention to the case where np (the other
case is symmetric, so there is no need to analyze it separately). We nowohamesider several
different outcomes with corresponding classes of strategy profileth€Xandidates tie with either
(a) allk citizens voting for A or (b) some of them abstaining; (2) some candidate vtimsr éa) by
one vote or (b) by two or more votes. Thus, we have four cases to esnsid

(&) ng4 = ng = k: Any voting supporter who deviates by abstaining causes his candidatesto los
the election and receives a payoff@f 1 — ¢. Thus, no voting supporter wants to deviate.
This profile is a Nash equilibrium.

(b) ng = np < k: Any abstaining supporter who deviates by voting causes his candidate to win
the election and receives a payoffobf ¢ > 1. Thus, an abstaining supporter wants to deviate.
This profile is not Nash equilibrium.

(c) na =ng+1orng = nyg + 1: Any abstaining supporter of the losing candidate who deviates
by voting causes his candidate to tie and increases his payoff fromk 8-ta These profiles
are not Nash equilibria.

(d) ng = ng +20rng > ng + 2: Any supporter of the winning candidate who switches from
voting to abstaining can increase his payoff fram ¢ to 2. Thus, these profiles cannot be
Nash equilibria.

Therefore, this game has a unique Nash equilibrium, in which everybadeyg amd the candidates
tie.

(c) Let's apply very similar logic to this part as well:
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(@) ng = np < k: Any supporter of B who switches from abstaining to voting causes B to win
and improves his payoff frorhto 2 — ¢. Such a profile cannot be a Nash equilibrium.

(b) ng =np+1orng =ny+1,withng < k: Any supporter of the losing candidate can switch
from abstaining to voting and cause his candidate to tie, increasing his frayofO to 1 — c.
Such a profile cannot be a Nash equilibrium.

(c) ng = korng =k + 1: Any supporter of A can switch from voting to abstaining and save the
cost of voting for a losing candidate, improving his payoff fremto 0. Such a profile cannot
be a Nash equilibrium.

(d) ng > np +2o0rng > ngq + 2: Any supporter of the winning candidate can switch from
voting to abstaining and improve his payoff frdn- ¢ to 2. Such a profile cannot be a Nash
equilibrium.

Thus, wherk < m, the game has no Nash equilibrium in pure stratetfies.

4 Symmetric Games

A useful class of normal form games can be applied in the study of intenaatibich involve anonymous
players. Since the analyst cannot distinguish among the players, it fahatvthey have the same strategy
sets (otherwise the analyst could tell them apart from the different gieatthey have available).

DEFINITION 13. A two-player normal form game &/mmetric if the players’ sets of strategies are the
same and their payoff functions are such that

u1(s1,s2) = uz(s2,s1) forevery(sy,sz) € S.

That s, player 1's payoff from a profile in which he chooses stratggnd his opponent choosesis the
same as player 2’s payoff from a profile, in which she choesemd player 1 chooseas. Note that these
do not really have to be equal, it just has to be the case that the outcommslared the same way for
each player. (Thus, we're not doing interpersonal comparisonsg @e have the same ordinal ranking,
we can always rescale the appropriate utility function to give the same narabehe other. Therefore,
we continue using the equality while keeping in mind what it is supposed toseqreA generic example,
as in Fig. 31 (p. 35) might help. You can probably already see that Rrisddilemma and Stag Hunt are

A B
Al w,w| x,y
B | y.x | zz

Figure 31: The Symmetric Game.

symmetric while BoS is not. We now define a special solution concept:

DEFINITION 14. A strategy profilés}, s3) is asymmetric Nash equilibrium if it is a Nash equilibrium
andsy = s3.

Thus, in a symmetric Nash equilibrium, all players choose the same strategyilibrgm. For example,
consider the game in Fig. 32 (p. 36). It has three Nash equilibria in pategies:(4, A), (C, A), and
(A,C). Only (A4, A) is symmetric.

Let's analyze several games where looking for symmetric Nash equilibria seise.

15Finding the MSNE is quite involved.
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A B C
All11]21]41
B|12]55]| 36
c|14]6,3]|0,0

Figure 32: Another Symmetric Game.

4.1 Rock, Paper, Scissors

Two kids play this well-known game. On the count of three, each player sinadtesly forms his hand
into the shape of either a rock, a piece of paper, or a pair of scis$tiathlpick the same shape, the game
ends in a tie. Otherwise, one player wins and the other loses accordingftldweng rule: rock beats
scissors, scissors beats paper, and paper beats rock. Each algaiyddf of1 if he wins,—1 if he loses,
ando if he ties. Find the Nash equilibria.

We start by the writing down the normal form of this game as shown in Fig. 336)p

Player 2
R P S
R| 0,0 | —1,1]1,—1
Playerl1 P | 1,—-1| 0,0 | —1,1
S|-1,1]1,—-1] 0,0

Figure 33: Rock, Paper, Scissors.

It is immediately obvious that this game has no Nash equilibrium in pure stratégiesplayer who
loses or ties can always switch to another strategy and win. This game is syoenetwe shall look for
symmetric mixed strategy equilibria first.

Let p, ¢, andl — p — g be the probability that a player chooskRsP, andS respectively. We first argue
that we must look only at completely mixed strategies (that is, mixed strategiguitigaisitive probability
on every available pure strategy). Suppose nhopise- 0 in some (possibly asymmetric) MSNE. If player
1 never chooseg, then playingP is strictly dominated by for player 2, so she will play eitheR or
S. However, if player 2 never choosés thenS is strictly dominated byR for player 1, so player 1 will
choose eitheR or P in equilibrium. However, since player 1 never choo&st follows that he must
chooseP with probability 1. But in this case player 2's optimal strategy will be to ffayo which either
R or S are better choices thaB. Therefore,p; = 0 cannot occur in equilibrium. Similar arguments
establish that in any equilibrium, any strategy must be completely mixed.

We now look for a symmetric equilibrium. Player 1's payoff fratris p(0) +g(— 1)+ (1—p—¢)(1) =
1 — p — 2q. His payoff fromP is2p + g — 1. His payoff fromsS is¢ — p. In a MSNE, the payoffs from
all three pure strategies must be the same, so:

l—p—-29g=2p+q—-1=q—p

Solving these equalities yielgs = g = 1/5. Thus, whenever player 2 plays the three pure strategies with
equal probability, player 1 is indifferent between his pure strategieashance can play any mixture. In
particular, he can play the same mixture as player 2, which would leave [Raypeifferent among his
pure strategies. This verifies the first condition in Proposition 1. Bedhese strategies are completely
mixed, we are done. Each player’s strategy in the symmetric Nash equilibrighs.id /3, 1/3). That is,
each player chooses among his three actions with equal probabilities.
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Is this the only MSNE? We already know that any mixed strategy profile muasistonly of completely
mixed strategies in equilibrium. Arguing in a way similar to that for the pure strategie can show that
there can be no equilibrium in which players put different weights on thei ptrategies.

Generally, you should check for MSNE in all combinations. That is, yaukhcheck whether there
are equilibria, in which one player chooses a pure strategy and the othes;ratuilibria, in which both
mix; and equilibria in which neither mixes. Note that the mixtures need not betbeezntire strategy
spaces, which means you should check every possible subset.

Thus, in a2 x 2 two-player game, each player has three possible choices: two in puegssaand
one that mixes between them. This yields 9 total combinations to check. Similarlg, in3atwo-player
game, each player has 7 choices: three pure strategies, one completaly anite¢hree partially mixed.
This means that we must examine 49 combinations! (You can see how thisiclly get out of hand.)
Note that in this case, you must chdudth conditions of Proposition 1.

4.2 Heartless New Yorkers

A pedestrian is hit by a taxi (happens quite a bitin NYC). There:greople in the vicinity of the accident,
and each of them has a cell phone. The injured pedestrian is uncamaciduequires immediate medical
attention, which will be forthcoming if at least one of thepeople calls for help. Simultaneously and
independently each of thebystanders decides whether to call for help or not. Each bystanden®bta
units of utility if the injured person receives help. Those who call pay aqmal cost ot < v. If no one
calls, each bystander receives a utility of 0. Find the symmetric Nash equifitwiuhis game. What is
the probability no one calls for help in equilibrium?

We begin by noting that there is no symmetric Nash equilibrium in pure stratéfyesbystander calls
for help, then one of them can do so and receive a strictly higher pajoff- ¢ > 0. If all call for help,
then any one can deviate by not calling and receive a strictly higherfpayofy — c. (Note that there are
n asymmetric Nash equilibria in pure strategies: the profiles, where exactlgyst@nder calls for help
and none of the others do, are all Nash equilibria. However, the potheajame is that these bystanders
are anonymous and do not know each other. Thus, it makes sense forl@okymmetric equilibrium.)

Thus, the symmetric equilibrium, if one exists, should be in mixed strategiesy betthe probability
that a person does not call for help. Consider bystandgrayoff of this mixed strategy profile. If each of
the othem — 1 bystanders does not call for help, help witit arrive with probabilityp” !, which means
that it will be called (by at least one of these bystanders) with probalilityp™ 1.

What isi to do? His payoff i p”~1(0) + (1 — p" 1v] = (1 — p* v if he does not call, and — ¢
if he does. From Proposition 1, we must fipdsuch that the payoffs from his two pure strategies are the
same:

A-p" YHY=v-c
P =ch
" 1
p = (C/v) n—1
Thus, when all other bystanders play= p*, i is indifferent between calling and not calling. This means
he can choose any mixture of the two, and in particular, he can chgbas well. Thus, the symmetric

mixed strategy Nash equilibrium is the profile where each bystander calls roibalpility 1 — p*.
To answer the second question, we compute the probability which equals:

P = (cfp)m=T
Sincen/(n—1) is decreasing im, and because/v < 1, it follows that the probability that nobody calls is
increasing im. The unfortunate result is that as the number of bystanders goes ypotability that any
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particular person will call for help goes down. Intuitively, the reasantits is that while persoins payoff
to calling remains the same regardless of the number of bystanders, tHétpayot calling increases
as that number goes up, so he becomes less likely to call. This is not sugprisihat is surprising,
however, is that as the size of the group increases, the probability fleasabne person will call for help
decrease¥®

4.3 All-Pay Auction

There aren > 1 bidders for an object, each of whom values itvat- 0. All players simultaneously
submit bidss; > 0, and the winner is the bidder who submits the highest bid (if there are multiplestigh
bidders, the winner is chosen randomly among them). Everyone paysith&irthe auctioneer regardless
of whether they win or not. The payoffs are thus- s; if bidderi is the winner, and-s; if she is not.

Let us first check if this game has equilibria in pure strategies. For fumsleleal with asymmetric
strategy profiles first. Consider any strategy profile where not all pediids are the same. Then anyone
who has submitted a losing bid could improve their payoff by submitting a zerd\micsuch profile can
be an equilibrium. Consider now a profile where therekare 2 positive bids that are all the same, and
everyone else bids nothing. Since the object is allocated randomly amonggtiesthbidders, each of
them expect®/k — s;. Any one of these bidders could deviate to a hid+ ¢ and ensure a win with a
payoffv — (s; + ). But then

v vk —1)

v—si—e>%—s,- < 8<T,
which means that such a profitable deviation always exists. Consider povfile where there is exactly
one highest bidder with* and everyone else bids zeros1f < v, then any of the players who bids nothing
could deviate to some€"* + ¢ and win with a strictly positive payoff. This is not possible only whé&n= v.
However, the strategy profile where only one player bids cannot bgulibgium because there is always
a lower bid that is also winning (that player can deviate to, say, half of thepased optimal bid). There
are no asymmetric PSNE in this game.

There are also no symmetric PSNE. If nobody bids, any player could pyafiaking a tiny positive bid
and win. If everyone bids the same and the big'is< v, then it is profitable to increase the bid slightly
to break the tie and win for sure. And if everyone hids= v, each player is better off not bidding at all.
What about symmetric MSNE?

Let F(x) denote the cdf induced by the mixed strategy (assume that it is atomless)s,Tihatplayer
bids x, then the probability it will exceed all other bids B(x)"~!. Since no player would ever bid
more tharw with positive probability (even winning in that case is worse than not biddinfgllows that
F(v) = 1inany MSNE. Since the player is willing to mix in equilibrium, they must be indiffeeenbng
all bids in the support of, or:

Fx)" lv—x=mu,

whereu is some, as yet unknown, payoff that is constant in the bid. Rearrateyimg yields:

1
ﬁ+x)n—l

F(x)=(

16This is why emergency training often says that when there are sewastanolers one should not just shout “Someone calll
911! but should instead point to a specific person and shout “Youdddll” This has the effect of immediately coordinating
expectations on one of the asymmetric Nash equilibria. By the way, thi#t iesaften used to “explain” the story of Kitty
Genovese, who was stabbed to death in 1964. The NYT claimed at the tibtkatemhad been 38 witnesses who saw or heard
the murder without a single one of them calling the police or rushing to helpTes story has been largely debunked: it is
not clear that anyone actually saw the murder, those who heard anythiegapparently very few in number, many of them not
recognizing what the sounds meant, and two people did call the police.
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Using F(v) = 1, this means that

7 n—1
(”+v) -1 = u=0,
U

which pins down the expected payoff and yields the solution:

1

F(x) = (%)m

In other words, the strategy mixes over all bids< v such that the cdf satisfies the condition above, and
yields an expected payoff of zero. No bids> v, which are not in the support of the mixed strategy, can
improve upon that payoff because they yield x < 0.

Competition among the bidders has left them with no expected surplus fronuttiera Since the
mixed strategy (the pdf) that inducé¥x) derived above is

()

foo = (n—1)x’

the expected payment for each bidder is:

1
v X X\n—1 v
/ xf(x)dxz—(”) = -,
0 n n
0
which means that the expected revenue for the auctioneer is

5 Some Canonical Games

Several simple 2-by-2 games have proven to be especially useful in thittkiough the strategic aspect
of certain situations. We have already seen the Battle of the Sexes, whichr®aical example of what
Schelling calls “mixed-motive” scenarios: situations have both cooperatisleconflictual aspects. In the
BoS game, players very much want to coordinate (on going togetherijdagfrde which of the cooperative
outcomes should obtain (they prefer different entertainment). This is sonsetefegred to as a game of
ranked coordination as opposed to one where players simply want tdicate without preference over
the way they do it. One example of this would be choosing which side of theoalie on: both driving
on the left or both driving on the right are preferable to the alternatiwéh, neither being superior to
the other. (A similar mixed-motive scenario is the Game of Chicken, whererglaysh to take different
actions, and the risk is that they match instead.)

Another famous coordination game is the Stag Hunt (SH), where the prabletthat players disagree
over the preferred cooperative outcome but that they might not be aplest@ach other enough to achieve
it. This is different from the Prisoner’s Dilemma (PD), where each plagsrehstrict individual incentive
not to cooperate. Since most of you are quite familiar with the PD game, let eisitaloser look at the
(much more interesting) SH.

5.1 The Stag Hunt

The Prisoner’s Dilemma is one type of social problem which assumes thatualldefection is preferable
to mutual cooperation. There are, however, situations in which mutuakcatipn is the most preferred
outcome for both players. And yet, as we shall now see, this in no wapugiggs their ability to cooperate.
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The classic illustration of such a social dilemma is due to Jean-JacquescRouand the story goes
as follows. Two hunters must decide whether to coope@te@nd hunt a stag together, or defebt, and
chase after a rabbit individually. If the both stalk the stag, they are céaagich it, and they can feast on
it. However, it requires both of them to stalk it, and if even one of them dogdhe stag is certain to get
away. If, on the other hand, a hunter goes chasing a bunny rabbitcheasn to catch one regardless of
what the other one does. Assume that if the other one is also hunting bits;ahe noise they both make
scares the tastiest rabbits away and they can only catch old and nastywitaréwer nutritional value.
In other words, if a hunter go after a rabbit, there is a slight prefertratehe does so on his own. Even
the best rabbit is worse for a hunter than his share of the stag. Therlyisme to stalk the stag or hunt
for rabbits, they cannot do both.

We set up the situation as a simultaneous-move two-player game. Each ofthesthas two strategies:
cooperate(C, or defect,D. The possible outcomes are: both cooperate and catch the stag (St&g), on
hunter chases a rabbit and the other stalks the stag (Yummy Bunny aneritegpectively), and both
hunt for rabbits (Stale Hare). The preference orderings are:

Stag > YummyBunny > Stale Hare > Hunger
Hunter1 (C,C) > (D,C) > (D, D) > (C,D)
Hunter2 (C,C) > (C,D) > (D, D) > (D,C)

Table 1: Preferences in the Stag Hunt.

Compare the rankings of the strategy profiles to those in the Prisoner’s DileAseefore, unrecipro-
cated cooperation is the worst possible outcome for each player, andl mefeetion is the second worst
outcome. Unlike the PD, however, the preferences in a Stag Hunt situagcsueh that both players
prefer mutual cooperation to unilateral defection.

The best responses in pure strategies involve matching what the other @ajoing. Thus, if the
other hunter is expected to go after the stag, cooperating (Stag) isgtiefer defecting (Yummy Bunny).
Analogously, if the other hunter is expected to go after a rabbit, defecHtale( Hare) is preferable to
cooperating (Hunger). This means that there are two PS8R ) and(D, D).’

Unlike the PD, mutual cooperation can be sustained in equilibrium. Unfortiynkite the PD, mutual
defection can also be an equilibrium. In that sense, assuming that bothsptegéer mutual cooperation
to every other possible outcome does not actually mean that they will cdep@tas is a fairly startling
result and it is worth thinking through why it happens.

Recall that a best response is a strategy that is optimal given what yduthieirother player is doing.
In this sense, cooperation is best if you think the other is cooperating. Nasa equilibrium, these
expectations are self-enforcing in the senseybat expectation of the other player choosing to cooperate
rationalizesyour choice to cooperate, which in turn validatieir expectation that you will cooperate,
which then rationalizetheir choice to cooperate, and this in turn validagesir expectation that they will
cooperate, closing the circle of mutually supporting expectations.

Unfortunately, the exact same logic applies in the case of defection. Ithiak your partner will
defect, you will defect as well, which validates their expectation that youdeiléct, which rationalizes
their defection, which in turn validates your expectation that they will defsgain, the circle is complete
and we have an equilibrium with mutually supporting expectations.

The question then seems to boil down to where we “begin” the circle of &foats. For instance, if we
think one of the hunters expects the other to cooperate, we end up withaperatve equilibrium. If, on
the other hand, we think one of the hunters expects the other to defeatgvp svith the non-cooperative

17This means that there is a MSNE as well. We shall derive it later when wsidsorthis game in generic form.
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equilibrium. So which expectation is more likely? Without knowing the hunterstagid relationship, it
is impossible to say for sufé. However, we could ask ourselves: if | were one of these hunters hvisic
theleast riskychoice to make? That is, which choice gives me an outcome that leaves mauleasable
to the behavior of the other hunter?

In a sense, we are trying to protect ourselves from a mistaken expecthgts say | generally trust
the other hunter to cooperate but | also know that sometimes he gets temptedhevbees rabbits, and
I am not entirely sure that he will not see a rabbit or that if he sees oile stalking the stag, he won't
abandon the stalking in order to chase after the rabbit. Now, if | coopénataild get the stag if he does
not get distracted but | will end up hungry if he does. If | defect, | ldayet the juicy rabbit if does not get
distracted, and | will end up with a stale hare if he does. When | coopéhateyorst possible thing that
can happen to me is to go hungry. When | defect, the worst possible thincgiv@appen to me is to end
up with a stale hare. In that sense, defection is less risky because & lBaiess vulnerable in the case
that | have misjudged my partner or he makes a mistake.

In case you are wondering, this can be formalized precisely. The notiaekedominancds due to
Harsanyi and Selten, and for this game it can applied as follows. Forezpglibrium, we can compute
the product of losses if someone deviates from it. Suppose you arerHusted consider your situation.
You are supposed to play the cooperative equilibri@dmC) but instead you deviate it. Sineg is a best
response t@', this deviation is going to cost you: your payoff frof®, C) cannot exceed the equilibrium
payoff by the very definition of equilibrium. In this case, you are going tifesia deviation lossof
Ly = ui1(C,C) —uy1(D,C). Consider now the non-cooperative equilibriyid, D) and suppose you
deviate from your strategy. This time, you will end ug@t D) with a deviation loss oL, = u (D, D)—
u1(C, D). Compare now your two deviation losses: if the loss frgin D) is greater than the loss from
(C,C), L/1 > L1, then you should bless likelyto deviate from( D, D). Intuitively, you stand to lose more
if you do so, so you would have less incentive to do it. From the other piagerspective, ther(,D, D)
appears less risky: you are more likely to stick with the equilibrium strategycaffenow apply the same
argument to the other player, if her deviation loss frgn D), L), = u»(D, D) —u2(D, C), exceeds her
deviation loss fromC, C), L, = uz(C,C) —u,(C, D), it makes sense that you should consider it more
likely that she should stick with her equilibrium strategy un¢igr D).

Putting these two together, we can computerisiedominancef one equilibrium profile over another.
Take the product of the deviation losses for the players{(d@IC) itis L; x L,, whereas fofD, D) itis
L', x L’,. The profile with thenigherproduct of losses is said to be risk-dominant: it is the one that players
are more likely to stick with. In this game, the assumptions that having the stag imairgetter than a
rabbit whereas that the failure to catch anything leads to starvation bail s/ > L;. This means that
the risk-dominant profile i$D, D). As a result, we would expe¢D, D) to be the equilibrium players
coordinate on, and mutual defection will be the outcome.

The risk-dominance argument would select the non-cooperative equititeven though one might
initially believe that rational actors would surely coordinate on the cooperatie: after all, both of them
would get better payoffs igC, C) than they do i D, D). In the context of a stag hunt, the advantage of
avoiding the worst-case scenario might not be obvious, at least nbtvasus as it is when we recast the
Stag Hunt as an arms race (which we shall shortly’do).

Even small doubts about his trustworthiness may make me think about defeldton it gets worse
if you consider what this means for my partner. Suppose he is awaretthgtdr small doubts about his
ability to resist temptation. Suppose he is resolved to resist it too. The prabldvat when he is aware

18This is where the MSNE would be a natural choice as a the solution as it waalhénfailure to coordinate with positive
probability.

19evolutionary models in which reproduction rates depend on relativeesadeom interactions also select the risk-dominant
equilibrium.
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of my doubt, he knows that | may be tempted to protect myself to avoid going homgnh But this
then makes him even more tempted to defect in order to protect himself frogleéiwith nothing. And
of course, | am aware of all of this, which makes me even more suspiciatibelmight actually defect,
which in turn makes me more likely to select the strategy that leaves me leastahintr that defection.
In other wordswe are very likely to end up in the non-cooperative equilibrium!

This is a very pessimistic result: we both prefer the cooperative equilibriveweything else, and this
fact is common knowledge. And yet, even small amounts of doubt aboutus$tevarthiness of the other
player along with desire to protect oneself from being wrong about ther edtalmost certain to produce
the second worst outcome for both us. In the Prisoner’s Dilemma, playertempted to defect from
the cooperative outcome because doing so gives them unambiguodis. bartke Stag Hunt, this is not
so: each player is certain to lose if he unilaterally defects from the coipemutcome. In both cases,
however, mutual defection is likely to happen.

The advantage of a SH-like situation over a PD-like situation is that the saldairda is solvable in
principle in the first case but not in the latter. For instance, if we manageotadlioate expectations and
attain a level of trust between ourselves, we will cooperate in SH but stilinetlicooperate in PD. The
cooperative outcome can be sustained in equilibrium in SH but not in PDhwhiglies that one possible
solution to cooperation failure in SH is to work on expectations.

5.2 The Arms Race: Which Model?

To see the conceptual difference between the PD and the SH, let us amoalehs race as either a PD or
a SH. Suppose it is determined that a new technology has just emergedtitcahliows both us and our
enemy to produce a super weapon that can guarantee winning a datiragainst an opponent who
does not have it. The confrontation is very important. If both have the eveape effects cancel each
other out. It takes a year to construct the weapon, but once built, inecimmediately useful. The
weapon is quite costly and each nation must shift resources from congowes to the military sector,
which is politically unattractive. Should we build the weapon or not?

We have already simplified the situation drastically in this description. Let's mpresent it with a
game. There are two players, “us” and “they.” Each has two optiorfectland build the weapom), or
cooperate and do not build if;. There are four outcomes: both build the weapon (an arms race), aaly on
builds the weapon (the one that does wins), or neither does (statudfquay. the enemy arms, we don’t
pay the cost of arming but lose the confrontation, which is really lolefeat If we arm and the enemy
arms as well, then we pay the cost but since nobody can get the upgkmniaaconfrontation occurgrms
race If we are the one side with the weapon, then we pay the cost but win tHeontation, which is
really good:victory. If neither side arms, no confrontation occusgatus quo If we arm, we pay the cost
of doing so regardless of whether the weapon is used or not. The &triatey is:

Player 2
C D
Status Quo | Defeat, Victory
Victory, Defeat| Arms Race

C
Pl 1
ayerl -

Figure 34: The Arms Race.
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5.2.1 As aPrisoner’s Dilemma

For this scenario, assume that the confrontation is very important so thaetledits of winning it exceed
the costs of producing the weapon. The preference ordering is as$ollo

Victory > Status Quo- Arms Race- Defeat

Note that victory is preferred to the status quo because the benefits firamng the confrontation are
so high that even when we factor in the costs of building the weapon, it is sti#fithan the status quo
life with the enemy. The status quo, however, is preferred to an arms emaeide with an arms race
we pay the costs of building the weapon but we don’t get anything outexfciept that the enemy can't
defeat us, which is what the status quo already is. Finally, the arms racefésrpd to defeat because
losing is so disastrous that it is worse than avoiding the costs of building thpome Since the situation
is symmetrical, our opponent has similar preferences.

These preferences give each individual player very strong inveesrtid build the weapon: each is strictly
better better off doing so irrespective of what the other player doethelbther player is expected to
cooperate by not building, defection yields Victory, which is preferablth&éoStatus Quo. If the other
player is expected to defect by building, defection yields an Arms Radehvwdpreferable to DefeatC
is strictly dominated byD, and thus the unique Nash equilibrium to this gam@is D). The equilibrium
outcome is an arms race: both players lose because they pay the costdin§libie weapons but do not
get any benefit from having them.

5.2.2 As a Stag Hunt

One possible objection to depicting the Arms Race dilemma as a PD is that it seemsite tiee actors
to be aggressive in the sense that they both prefer to compel the otheittdata than live with the status
quo. Historically, even classic antagonists sometimes become essentially stapusxgrs over time. We
could argue that the Arms Race had ceased to be a PD and had becomiuatdhs

Status Quo > Victory > ArmsRace > Defeat
Playerl (C,C) = (D,C) > (D, D) > (C,D)
Player2 (C,C) > (C,D) > (D, D) > (D,C)

Table 2: Stag Hunt Preferences for the Arms Race Game.

Mutual disarmament would be the cooperative outcome which preservetathie quo and avoids the
expense of building weapons. If the other side is expected to cooptraegach player prefers to do so
as well. On the other hand, if one fails to arm when the other one does, trendid player would be
saddled with the worst possible outcome: defeat. Prudential reasormjggsta that the less risky choice
is to arm: you would get your second-best choice is the opponent icatomy and you would end up
in an arms race if he defects as well. An arms race, while expensive, is pneferable to defeat. Small
amounts of suspicion about the opponent’s intent would then fak®) the more likely outcome.

The logic of the arms race in a SH-like scenario is fundamentally one of mistisistaversion, and
prudential reasoning. The logic of an arms race in a PD-like scenarieisfotesire to exploit the other
side’s cooperative effort combine with a desire to avoid being saddledhétivorst possible outcome. In
this sense, the Stag Hunt is probably captures the dynamics of feaeththostility much better than a
Prisoner’s Dilemma.

In international politics, one cannot know the intent and motivations ofsoopponent (or partner).
We cannot peek into the heads of decision-makers to verify that they tdintead to attack us, which
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is (of course) what they usually claim. Intentions are not only unverifighkey are volatile. Changing
governments, the particular mood of the leader, or many other factors ragelthe evaluation of the
desirability of attack on a moment’s notice. This is why states normally do not nelytentions, they are
forced toinfer intent fromobservablecapabilities and behavior.

This is where suspicion comes into play. If | cannot be certain that my @dras no intention to
attack me, | must admit the possibility (however small) that he might do so. Simog tefeated is the
worst possible scenario for me, prudential reasoning might lead me risigltdge cooperative outcome
in favor of securing, at the very least, a costly preservation of the sfamsSo | build some weapons to
guarantee my security. Unfortunately, my act of increasing my security immeddaecreases the security
of my opponent. He would reason as follows: “l was almost sure that haatitiave hostile intent but
now | see him arming. | know he claims it is purely for defense but is thaPssRaps he intends to catch
me unprepared and defeat me? And even if that is not so, he clearliyndb&ast me enough or else he
would not have started arming. | would like to reassure him that | can betrbsit the only way to do so
is to remain unarmed, which unfortunately is very risky if he does happeauv® &ggressive intent. So |
better arm just to make sure | will not have to surrender in that eventuality.”

My opponent then arms as well, which makes me even less secure. We ketmatched each other
in armaments, the status quo survives, but we also learned that we ¢arsta@ach other not to arm.
Because we cannot observe intent, we can only see the arming decisamootld be because the other
side is afraid or it could be because the other side is aggressive.urRaass being too risky, we opt for the
prudential choice and continue arming, further increasing the suspistbhastility. The process feeds on
itself and rationalizes the non-cooperative outcome, just as in the origagHsint story. The process, in
which small doubts lead to defensive measures which increase the ihgeftine opponent, who reacts
with defensive measures of his own, which increases my insecurity awdlbas my doubts leading to
further defensive measures on my patrt, is calledSbeurity Dilemmaand it is very similar to the Stag
Hunt scenario.

Notice that once the suspicion starts, it is in the interest of the players toadsist and get the
cooperative equilibrium. Unfortunately, trust can only be restored ifajriiee players decides to take the
risk and plunge into unilateral disarmament. If his opponent turns out t® &&H preference structure
(prefers the status quo without arms to victory), then this gesture woulddigrocated and the players
could potentially go to a stable cooperative solution. If, on the other harads opponent turns out to have
a PD preference structure, then one risks defeat. If one suspetctsatapponent has PD preferences or
if one’s opponent is so suspicious that he would ignore the gesturdaperpvould make the necessary
first step to achieving cooperation.

What model you think represents the Arms Race problem best depemdsabyou think the structure
of the preferences is. If you think of the Arms Race as a Prisoner’s Dilerpouawould not recommend
trust-building and risky unilateral actions: the opponent is sure to ignyihiag you say and would not
reciprocate restraint because exploiting your weakness is prefeamabtmperation. If you think of the
Arms Race as a Stag Hunt, on the other hand, you would recommend trustigpudldd you might even
recommend a dramatic unilateral gesture that runs serious risks butihzgrsaade the opponent of your
peaceful intent.

5.3 Generic Conflict Games

We have now seen several canonical games like Chicken, the Stag Hdnthe Prisoner’s Dilemma.
When the games involve no uncertainty either because of chance moviee dhsplayers’ control or
because of mixed strategies, the precise values of the payoffs do not, roatyetheir ordinal ranking
does. However, when the game does involve chance — as it must whesoewe player uses a mixed
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strategy — then the cardinal values become important. Why it is so is a bit taghmit essentially it
is because risky choices involve attitudes toward risks and the sizes oayioffploom large in those
calculations. When | am running a 20% risk of disaster for an 80% chafrtbe other player capitulating,
it certainly matters not merely that disaster is worse than him capitulating bujualtseow much worse
it is. The worse it is, the less willing | become to take my chances. Von NeumahiMargenstern’s
Expected Utility Theory in fact specifies the assumptions about prefesener risky choices we need to
make in order to ensure that we can represent these preferencesimitiers and calculate the resulting
expected utilities.

Consider a generic two-player simultaneous-move game where eachhayamly two pure strategies:
escalate £) or not~E. We can represent it in a 2-by-2 payoff matrix, as in Fig. 35 (p. 45& mhemonics
for the variables ar® for “war”, V for “victory”, D for “defeat”, andS for “status quo”.

Player 2

~F E

~E | S§,S | D,V
Player 1 ElVD ww

Figure 35: The Generic Game.

We shall now see how varying the ordinal rankings among these varigblds all the games we have
seen so far, and how we can glean some additional insights from rapingsthem in this form. First,
however, we shall make a crucial assumption that we shall maintain moresahlesighout all models
that we are going to analyze: we shall assume that our players are nimvivey and do not like defeat:
they always prefer both the status quo and victory to either war or défieadr notation, we are going to
assume that

AsSSUMPTIONL. Players are not war-loving, = W andV > W, and want to avoid defea$, > D and
V > D.

The only variation we shall allow is between the rankingsSaénd IV’ — which we can think of as the
strength of the incentive players have to take advantage of the cowpdrahavior of the opponent (do
they reward cooperation with restraint and obt&ior do they exploit it and obtaifr), and the rankings
of W and D — which we can think of as their fear of being exploited (do they prefer tit fetppen and
obtain D, or would they rather avoid it and obtai#).2°

What can we say about this game? We know t{#ate) will be an equilibrium whenevelW > D.
Moreover, it will be the unique equilibrium i > S too. In other words, if the complete ordering is

VS>W3>D,

then the game isRrisoner’s Dilemmaand its unique equilibrium yields the payoffs that are second-worst
for the players. When the fear of being exploitéd - D) combines with a desire to take advantage of
the other player{ > ), then players will be unable to coordinate on a cooperative outcomedtega
of the amount of communication they are allowed to engage in.

If, on the other hand§ > V, then(~E, ~e) will be an equilibrium as well. When the ordering is

S>=Vs>=Ws>= D,

20\We are making these assumptions because otherwise our insights wipdrdicial: it is not going to be very helpful if we
found out that players go to war in equilibrium when they both value war & .nThis is not to say that this cannot happen but
that the analysis is trivial. It would be much more interesting if we foundlkeaters go to war in equilibrium even though war
is among their least-preferred outcomes.
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then the game is 8tag Hunt, and it has two-pure strategy equilibria, Witk E, ~¢) being the one both
players prefer (it, in fact, yields the highest possible payoff for edalep), but wherg(E, e) is risk-
dominant, making it more likely for the players to coordinate on that profile atairotheir next-to-worst
payoffs. Thus, making the status quo more attractive — which eliminates tire tietake advantage of
the other player — can help, but the resulting situation (which still has thefdsing exploited looming
as the worst possible outcome) still presents players with a difficult dilemmeevthe outcome can be
very dependent on the amount of trust they have for each other. Ihainosmstances, this trust will not
be enough to overcome to fear, and players will again end up with theitoexorst outcomé?l

You might be tempted to conclude that perhaps it is the fear of being explo#dsticausing the
problem here, so let's suppose players do not hagB it- W) but that they still want to take advantage
of each otheW > S. The resulting preference ordering will be

V-S>=D>=W,

and you can verify that this makes thiscame of Chicken The two pure-strategy Nash equilibria are
(E, ~e) and (~E, e) but we know that there is going to be another one in mixed strategies as well. To
find it, let p andg be probabilities with which player 1 and player 2 escalate, respectivel/eXpected
payoff for player 1 can be computed as follows:

Ul(E.q) = qui(W) + (1 —@ui (V) = ur (V) — q[ur(V) —uy (W)]
Ui(~E.q) = qui(D) + (1 — Q)u1(S) = u1(S) — q[u1(S) —u1(D)].
We know that player 1 will only be willing to mix when indifferent between hisepsirategies, so in the
MSNE it must be the case th&y (E,q) = Ui (~E, g). Solving this tells us that player 1 will mix only
when he thinks that player 2 is going to escalate with probability
_ 1 (V) —ui(S)
ur(V) —u1(S) + u1(D) —ur (W)

The preference ordering ensures that this is a valid probability. Wesfuctinclude that whenever player
1 is mixing, player 2 must be mixing as well, which in turn pins down the precideagibty with which
she must expect player 1 to escalate, which we derive by séftitg, £) = U>(p, ~F), or:

uz(V) —MQ(S)
uz(V) —ua(S) + uz(D) —uz (W)

We already know that in the MSNE the probability of war is positive, but wesay something more about
the crisis. For example, we can ask questions like: “What happens todbalplity that player 1 escalates
if player 2's payoff from victoryu, (V'), increases?” Try answering this first without analyzing the model.
You might reason as follows: well, since player 2’s payoff from victorgasv larger than before and she
can only get this outcome by escalating, she should be more willing to escalatbel words, increasing
the payoff for victory should make her more willing to take risks to achieve ab&tome, sa; should
go up. But since this makes escalation more dangerous for player 1 apalyiois have not changed, he
should be less willing to escalate. Thus, the increase in the victory paygifdper 2 must mean that she
is more likely to secure the prize without a fight, and that the overall likelihoadanfis smaller.

The first surprise is that player 2 will not, in fact, escalate with a higheoaisiity in equilibrium. As
you can see from the expression abayes entirely independent of, (V). This is because in equilibrium

21In fact, the Stag Hunt, like the Chicken game, also has an equilibrium in miseegies. It is specified exactly in the same
way as we shall do for the Chicken game, so there is no need to do it here.
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her escalation probability reflects player 1's expectations about havizelthat makénim indifferent, and
this calculation naturally only involves player 1's payoffs. Since these havchanged; will not change
either.

But how can that be? Our intuition seems to demand that an increasélin must have some effect on
behavior. .. and it does, just not where you would first expect it.sitiem player 1's strategy. You can see
that p is a function ofu, (1), and you can easily verify that it is, in fact, stricttycreasingin that value:

dp _ uz(D) —uz(W) -0
duz(V)  [uz(V) —ua(S) + ua(D) —uz(W)]*

In other words, increasing player 2's payoff from victory must makegid morelikely to escalate in
equilibrium! What?!?! This just made matters even more confusing!

This, however, what being “in equilibrium” really means. It means that ptagaist be willing to stick
to their strategies. Initially, player 2 is indifferent and so willing to play the mixedtsgy. When her
payoff from victory increases and nothing else changes, howdwewy#l no longer be willing to mix: the
expected payoff from escalation given the probability that player lassawill now be strictly greater
than the expected payoff from not escalating, and as a result she aciully strictly prefer to escalate.
But if she is going to escalate, then player 1 will no longer be willing to mix eitheother words, the
strategies would no longer constitute an equilibrium. If player 1 cannotginetiat his opponent is going
to do in equilibrium (i.e., player 2 is mixing), then it must be that player 2 is exgeoteontinue to be
indifferent afteru, (V) increases. Since none of the other payoffs have changed, the oplthisacan
happen is through an increase in player 1's probability of escalation ljwhékes her bad outcome more
likely). Since this puts more weight on the war outcome, it decreases thetegpgeayoff from escalation
for player 2 even whem, (V) goes up. Thus, if the mixed strategies are going to remain optimal, an
increase iniz (1) will be met with an increase ip.

In other words, our intuitive logic has some parts right (e.g., that increasil’) will make player 2
prefer escalation) but fails to consider the entire effect (e.g., whagdmgpwhen you put this fact together
with the requirement that players choose best responses). This isimple sntuition might sometimes
prove quite misleading.

Finally, observe that sincg goes up and; remains constant, an increaseup(}’) also leads to an
increase in the equilibrium probability of war, which i®Rfar) = pq. Thus, an increase in the value for
victory for one of the players makes the other one more aggressivé, miadtes it more likely that they
will end up fighting.

Analogous arguments establish that when a player’s value for war gegetnen the probability with
which his opponent escalates in equilibrium must increase as wédl icreasing inuy (W) just like ¢
is increasing inu; (W)). This also seems counter-intuitive: a player’s dislike of fighting deexebst as
a result his opponent becomes more likely to escalate. The overall effght be less surprising: the
equilibrium probability of war increases.

Conversely, when a player’s value for the status quo increases, ihe@pponent’'s probability of es-
calation must go downy(is decreasing im,(S)). This is surprising when you recall that the opponent
prefers to take advantage of such failures to escalate. The overdit,dfiowever, might be what you
expect: the equilibrium probability of war decreases. At least we obtaimambiguous prediction: if
one is interested in preserving peace, then making the status quo morde/étuiatar more costly) is the
way to go.
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6 Five Interpretations of Mixed Strategies

See Osborne and Rubinstei®sCourse in Game Theagrpp. 37-44 for a more detailed treatment of this
subject. Here, | only sketch several substantive justifications for mixategies.

6.1 Deliberate Randomization

The notion of mixed strategy might seem somewhat contrived and couhtéivin One (naive) view is
that playing a mixed strategy means that the player deliberately introduasmagrss into his behavior.
That is, a player who uses a mixed strategy commits to a randomization devide yidiats the various
pure strategies with the probabilities specified by the mixed strategy. Aftelagittqs have committed in
this way, their randomization devices are operated, which produces #begstiprofile. Each player then
consults his randomization device and implements the pure strategy that it tells. Aitmggroduces the
outcome for the game.

This interpretation makes sense for games where players try to outgubsstiear (e.g. strictly com-
petitive games, poker, and tax audits). However, it has two problems.

First, the notion of mixed strategy equilibrium does not capture the playersvation to introduce
randomness into their behavior. This is usually done in order to influendeethavior of other players.
We shall rectify some of this once we start working with extensive form gamevhich players move can
sequentially.

Second, and perhaps more troubling, in equilibrium a player is indifféretwteen his mixed strategy
and any other mixture of the strategies in the support of his equilibrium mixagtgtes. His equilibrium
mixed strategy is only one of many strategies that yield the same expectef gisgofthe other players’
equilibrium behavior.

6.2 Equilibrium as a Steady State

Osborne (and others) introduce Nash equilibrium as a steady state irviaonerent in which players
act repeatedly and ignore any strategic link that may exist between sivecegeractions. In this sense,
a mixed strategy represents information that players have about pasctiies. For example, if 80%
of past play by player 1 involved choosing stratetyand 20% involved choosing strate@y then these
frequencies form the beliefs each player can form about the futina/imr of other players when they are
in the role of player 1. Thus, the corresponding belief will be that play®ays A with probability.8 and

B with probability.2. In equilibrium, the frequencies will remain constant over time, and eaclepsay
strategy is optimal given the steady state beliefs.

6.3 Pure Strategies in an Extended Game

Before a player selects an action, he may receive a private signal ich tv can base his action. Most
importantly, the player may not consciously link the signal with his action (e.dayepmay be in a
particular mood which made him choose one strategy over another). Thef sung will appear random
to the other players if they (a) perceive the factors affecting the chaideredevant, or (b) find it too
difficult or costly to determine the relationship.

The problem with this interpretation is that it is hard to accept the notion thagdaleliberately make
choices depending on factors that do not affect the payoffs. Henvgince in a mixed strategy equilibrium
a player is indifferent among his pure strategies in the support of the mivetdgy, it may make sense to
pick one because of mood. (There are other criticisms of this interpretaéerQ&R.)
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6.4 Pure Strategies in a Perturbed Game

Harsanyi introduced another interpretation of mixed strategies, acgainhich a game is a frequently
occurring situation, in which players’ preferences are subject to saraflam perturbations. Like in the
previous section, random factors are introduced, but here thegt #file payoffs. Each player observes
his own preferences but not that of other players. The mixed stratpglbeium is a summary of the
frequencies with which the players choose their actions over time.

Establishing this result requires knowledge of Bayesian Games, whichall@btain later in the course.
Harsanyi's result is so elegant because even if no player makesfartyt@iise his pure strategies with the
required probabilities, the random variations in the payoff functions ie@ach player to choose the pure
strategies with the right frequencies. The equilibrium behavior of othgepdas such that a player who
chooses the uniquely optimal pure strategy for each realization of higfgagotion chooses his actions
with the frequencies required by his equilibrium mixed strategy.

6.5 Beliefs

Other authors prefer to interpret mixed strategies as beliefs. That is, thd sinategy profile is a profile of
beliefs, in which each player’s mixed strategy is the common belief of all otageps about this player’s

strategies. Here, each player chooses a single strategy, not a mixeflroaquilibrium is a steady state
of beliefs, not actions. This interpretation is the one we used when wesdefifSNE in terms of best

responses. The problem here is that each player chooses an actienaeest response to equilibrium
beliefs. The set of these best responses includes every strategysappert of the equilibrium mixed

strategy (a problem similar to the one in the first interpretation).

7 The Fundamental Theorem (Nash, 1950)

Since this theorem is such a central result in game theory, we shall peesemewhat more formal version
of it, along with a sketch of the proof. finite game is a game with finite number of players and a finite
strategy space. The following theorem due to John Nash (1950) eseabhstery useful result which
guarantees that the Nash equilibrium concept provides a solution fior faviée game.

THEOREM 1. Every finite game has at least one mixed strategy equilibrium. o

Recall that a pure strategy is a degenerate mixed strategy. This theoesnmatoassert the existence
of an equilibrium with non-degenerate mixing. In other words, every fird@e will have at least one
equilibrium, in pure or mixed strategies.

The proof requires the idea of best response correspondenadissmssed. However, it is moderately
technical in the sense that it requires the knowledge of continuity propeiftmorrespondences and some
set theory. | will give the outline of the proof here but you should redab@ns pp. 45-48 for some
additional insight.

Proof. Recall that player’s best response correspondeii® (o—;) maps each strategy profitketo a
set of mixed strategies that maximize playerpayoff when the other players play.;. Letr; = BR (o)

for all 0 € X denote player’s best reaction correspondence. That is, it is the set of bestneaspdor
all possible mixed strategy profiles. Define ¥ = X to be the Cartesian product of the (That is,
r is the set of all possible combinations of the players best responsefxedipointof r is a strategy
profile o* € r(o*) such that, for each playes;* € r;(c*). In other words, a fixed point of is a Nash
equilibrium.
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The second step involves showing thafctually has a fixed point. Kakutani’'s fixed point theorem
establishes four conditions that together are sufficient torhave a fixed point:

1. X is compact? convex?® nonempty subset of a finite-dimensional Euclidean spgéce;
2. r(o) is nonempty for alb;

3. r(o) is convex for allo;

4. r is upper hemi-continuou.

We must now show thaf andr meet the requirements of Kakutani’s theorem. Sikgds a simplex of
dimension #; — 1 (that is, the number of pure strategies playéias less 1), it is compact, convex, and
nonempty. Since the payoff functions are continuous and defined onambregts, they attain maxima,
which means: (o) is nonempty for alb. To see the third case, note thatif € r(o) ando” € r(o) are
both best response profiles, then for each plagsrda € (0, 1),

ui(ao] + (1 —a)o!',0-i) = au;(o],0-;) + (1 — a)u; (o], 0-),

that is, if botho; ando;” are best responses for playeto o_;, then so is their weighted average. Thus,
the third condition is satisfied. The fourth condition requires sequenddhdintuition is that if it were
violated, then at least one player will have a mixed strategy that yields df plagbis strictly better than
the one in the best response correspondence, a contradiction.

Thus, all conditions of Kakutani’s fixed point theorem are satisfiedlamtest reaction correspondence
has a fixed point. Hence, every finite game has at least one Nash eqmilibriu n

Somewhat stronger results have been obtained for other types of gamegames with uncountable
number of actions). Generally, if the strategy spaces and payoff funsci® well-behaved (that is, strategy
sets are nonempty compact subset of a metric space, and payoff fisnat®mrontinuous), then Nash
equilibrium exists. Most often, some games may not have a Nash equilibricemsethe payoff functions
are discontinuous (and so the best reply correspondences may abgtuatypty).

Note that some of the games we have analyzed so far do not meet the megpusef the proof (e.g.
games with continuous strategy spaces), yet they have Nash equilibisam&hans that Nash’s Theorem
provides sufficient, but not necessary, conditions for the existeiheguilibrium. There are many games
that do not satisfy the conditions of the Theorem but that have Nash equiilsolutions.

Now that existence has been established, we want to be able to chagstttereqjuilibrium set. Ideally,
we want to have a unique solution, but as we shall see, this is a raregemoeiwhich happens only under
very strong and special conditions. Most games we consider will have than one equilibrium. In
addition, in many games the set of equilibria itself is hard to characterize.

22pny sequence it has a subsequence that converges to a poiBt iAlternatively, a compact set is closed and bounded.

235 is convex if every convex combination of any two points in the set is also isehe

24For our purposes, the Euclidean space is the sarfié g@ise. the set ofi-tuples of real numbers.

25A correspondence is upper-hemicontinuousgif every sequence in which(x) — xo has a limit which lies in the image
set ofxg. That is, if (¢”,6") — (0,6) with 6" € r(c"), thené € r(o). This condition is also sometimes referred ta-&$
having aclosed graph
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