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1 The Strategic (Normal) Form

Every strategy profiles induces an outcome of the game: a sequence of moves actually taken as specified
by the strategies and a probability distribution over the terminal nodes of the game. If the game is one of
certainty (no moves by Nature), thens specifies one outcome with certainty. Otherwise, more than one
outcome may occur with positive probability. The point is that we can calculate the expected payoffs of all
players. Sometimes, it is useful to analyze the game in itsstrategic form, which includes only the players,
their actions, and the payoffs in its description.

Putting things a little more formally, letn be the number of players. For each playeri , denote the
strategy space bySi . (We shall sometimes writesj 2 Si to reflect that strategysj is a member of the set
of strategiesSi .) Let .s1; s2; : : : ; sn/ denote a strategy profile, wheres1 is the action of player 1,s2 is the
action of player 2, and so on. LetS D S1 � S2 � : : : � Sn denote the set of strategy profiles.

For each playeri , define the vNM expected utility functionUi W S ! R so that for eachs 2 S that
players choose,Ui .s/ is playeri ’s expected payoff from outcomes.

DEFINITION 1. For a game withI D f1; : : : ; ng players, thestrategic (normal) form representation
G D fI; S; U g specifies for each playeri a set of strategiesSi and a payoff functionUi W S ! R, where
S D �Si , andU D .U1; : : : ; Un/.

When we analyze these games, we often assume that players choose their strategies simultaneously, and
hence we call themsimultaneous-move games. However, this does not require that players strictly act at
the same time. All that is necessary is that each player acts without knowledgeof what others have done.
That is, players cannot condition their strategies on observable actions of the other players.

Of course, this ignores the information about timing of moves explicitly specifiedby the extensive form.
The question boils down to whether we think such questions are essential to the situation we are trying
to analyze. If they are not, then it should not matter greatly if we simplify our description to exclude
such information. In an important sense, the strategic form is astatic modelbecause it dispenses with the
dynamics of timing of moves completely.

This may not be as controversial (or useless) as it sounds. First, as weshall see, there are great many
situations that we might profitably analyze without reference to the timing of moves. Second, the sim-
plified representation is actually considerably easier to analyze, so we canbenefit from dispensing with
information that is not essential. We shall, of course, also see that there are many, many situations where
ignoring timing has crucial consequences and our solutions based on the normal form will be quite sus-
picious precisely because they will discard such information. The question(again) will boil down to the
choice of representation, which a researcher has to make based on herskill and experience.

1.1 Reduced Strategic Form

Two pure strategies areequivalentif they induce the same probability distribution over the outcomes for
all pure strategies for the opponents. Or, putting it a bit more formally:

DEFINITION 2. Given any strategic form gameG D fI; S; U g, for any playeri and any two strategies
s1; s2 2 Si , the strategiess1 ands2 arepayoff-equivalent if, and only if,

Uj .s1; s�i / D Uj .s2; s�i /; 8s�i 2 S�i ; 8j 2 I:

That is, no matter what all other players do, no player cares whetheri usess1 or s2. Let’s parse this
expression. To see whether two strategies for player 1 are payoff-equivalent, we take each strategy of
player 2 in turn and compare the payoffs that player 1 obtains from playings1 ands2 against that, then we
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compare the payoffs that player 2 obtains from player 1 playings1 ands2 against her strategy. If either of
these two comparisons produces a difference, stop: the two strategies are not payoff-equivalent. If, on the
other hand, they yield the same payoffs in both cases, proceed to the nextstrategy for player 2 and repeat
the process. If you exhaust all strategies for player 2 in this way and thecomparisons have not yielded any
differences, then the two strategies for player 1 are payoff-equivalent.

Consider the game in Fig. 1 (p. 3), where the strategiesAE andAF for player 1 are equivalent.

Player 1

Player 2
c d

AE 1; 1 1; 1

AF 1; 1 1; 1

BE �1; 1 3; 2

BF �1; 1 4; 0

Figure 1: Simple Game with Equivalent Pure Strategies.

In this example, the two pure strategiesAE and AF always lead to the same outcome because the
game ends when the first action is taken and so the second information set is never reached. This happens
regardless of what player 2 does at her information set. That is, fix player 2’s strategy to bec, then:
(i) player 1’s payoff fromAE is 1, which is the same as his payoff fromAF ; (ii) player 2’s payoff from
player 1 choosingAE is 1, which is the same as her payoff from him choosingAF . So neither player cares
if player 1 choosesAE or AF if player 2 choosesc. Next, fix player 2’s strategy to bed , then: (i) player
1’s payoff fromAE is 1, which is the same as his payoff fromAF ; (ii) player 2’s payoff from player 1
choosingAE is 1, which is the same as her payoff from him choosingAF . Hence, neither player cares if
player 1 choosesAE or AF if player 2 choosesd . Since there are no more strategies for player 2 to check
against, we are done: no player cares what player 1 does regardlessof what player 2 chooses. Observe that
in these comparisons we had to check whether player 1 himself would care, not just whether his opponent
would. We can now simplify the normal form representation by removing all but one strategies from every
class of equivalent strategies.

DEFINITION 3. Thepurely reduced normal form of an extensive form game is obtained by eliminating
all but one member of each equivalence class of pure strategies.

Therefore, we can remove eitherAE or AF (but not both) to obtain the reduced normal form shown in
Fig. 2 (p. 3). The “new” strategy for player 1 is calledA.

Player 1

Player 2
c d

A 1; 1 1; 1

BE �1; 1 3; 2

BF �1; 1 4; 0

Figure 2: The Reduced Normal Form of the Game from Fig. 1 (p. 3).

The example we just did may be a bit misleading because the payoffs for the players are always the same
in all the outcomes regardless of what player 2 chooses. This need not be the case. To see that, consider
the strategic form game in Fig. 3 (p. 4).

To decide whetherU andD are payoff-equivalent, we first fix player 2’s strategy atL and observe
that players get.3; 1/ no matter which of the two pure strategies under consideration player 1 chooses.
We then fix player 2’s strategy atR and observe that players get.�2; 0/ regardless of whether player 1
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Player 1

Player 2
L R

U 3; 1 �2; 0

M 4; 3 4; 3

D 3; 1 �2; 0.
Player 1

Player 2
L R

U 3; 1 �2; 0

M 4; 3 4; 3

Figure 3: Reducing a Game with Different Payoffs.

choosesU or D. Hence, the two are payoff-equivalent, and we can eliminate one of them. Observe that
a player can get different payoffs depending on whether player 2 choosesL or R from strategies that are
payoff-equivalent (i.e., player 1 can get either3 or �2) but this is not the relevant comparison to make. For
example, both players get.4; 3/ if player 1 choosesM regardless of player 2’s action. However, this does
not mean thatL andR are payoff-equivalent (because players would get different payoffs against either
one of these if player 1 chooses a different strategy.)

Consider now the game in Fig. 4 (p. 4).

Player 1

Player 2
x y

.a; c/ 6; 0 6; 0

.a; d/ 6; 0 6; 0

.a; e/ 6; 0 6; 0

.b; c/ 8; 0 0; 8

.b; d/ 0; 8 8; 0

.b; e/ 3; 4 7; 0

Figure 4: Another Game from Myerson.

It is fairly obvious that the strategies.a; c/, .a; d/, and .a; e/ are payoff equivalent to one another
because regardless of what player 2 does, the outcome from all three isthe same. In other words, player 1
does not care what player 2 does if he chooses any of these three strategies. We can therefore merge these
three strategies into a new one, calledA, with the resulting payoff matrix in Fig. 5 (p. 4).

Player 1

Player 2
x y

A 6; 0 6; 0

.b; c/ 8; 0 0; 8

.b; d/ 0; 8 8; 0

.b; e/ 3; 4 7; 0

Figure 5: The Purely Reduced Strategic Form of the Game from Fig. 4 (p. 4).

We can reduce this game further, but to do this, we need to introduce the concept of mixed strategies.

2 Mixed Strategies in Strategic Form Games

So far, we have considered only strategies that involve playing a selectedaction with probability 1. We
called thesepure strategiesto emphasize this. We now consider randomized choices.
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DEFINITION 4. A mixed strategy for playeri , denoted by�i , is a probability distribution overi ’s set of
pure strategiesSi . Denote the mixed strategy space for playeri by †i , where�i .si / is the probability that
�i assigns to the pure strategysi 2 Si . The space of mixed strategy profiles is denoted by† D 4†i .

Thus, if playeri hasK pure strategies:Si D fsi1; si2; : : : ; siKg, then a mixed strategy for playeri is a
probability distribution�i D f�i .si1/; �i .si2/; : : : ; �i .siK/g, where�i .sik/ is the probability that player
i will choose strategysik for k D 1; 2; : : : ; K. Since�i is a probability distribution, we require that
�i .sik/ 2 Œ0; 1� for all k D 1; 2; : : : ; K and

PK
kD1 �i .sik/ D 1. That is, the probabilities must be non-

negative and not larger than 1, and should sum up to 1. You can think of amixed strategy as a lottery
whose “outcomes” are pure strategies.

Each player’s randomization is statistically independent of those of his opponents,1 and the payoffs to
the mixed strategy profile are the expected values of the corresponding pure strategy payoffs.2 You should
now see why we needed Expected Utility Theory. Playeri ’s payoff from a mixed strategy profile� 2 †

in ann-player game is

Ui .�/ D
X

s2S

0

@

n
Y

j D1

�j .sj /

1

A ui .s/

Let’s parse this expression. The mixed strategy profile� is a list of mixed strategies, one for each player:
� D f�1; �2; : : : ; �ng. Each of these mixed strategies, e.g.�i , is a list of probabilities associated with
playeri ’s set of pure strategies. To find the probability of an outcome, we need to calculate the probability
that all players choose the pure strategies that produce this outcome. Thus, if the pure strategy profiles 2 S

produces the outcome we are interested in, the probability of this outcome is the product of probabilities
that each player chooses the pure strategy in this profile (because of independence).

Consider first an example from a game without chance moves, like Matching Pennies. To make things
specific, let’s use the mixed strategy profile� D h.1=3H; 2=3T /; .1=4H; 3=4T /i. In this profile, player 1’s
mixed strategy specifies playingH with probability 1=3 andT with probability 2=3, and player 2’s mixed
strategy strategy specifies playingH with probability 1=4, andT with probability 3=4. There are four pure
strategy profiles:S D f.H; H/; .H; T /; .T; H/; .T; T /g that produce the four outcomes of the game.

As usual, the strategy profile� induces a probability distribution over the outcomes. The probability of
each outcome is the product of the probabilities that each player chooses the relevant strategy. For example,
the probability of the pure strategy profile.H; H/ being played is.1=3/ .1=4/ D 1=12. Analogously, the
probabilities of the other pure strategy profiles being played are Pr.H; T / D 1=4, Pr.T; H/ D 1=6, and
Pr.T; T / D 1=2. (You should verify that these sum to 1, which they must because they areprobabilities
of exhaustive and mutually exclusive events.) Fig. 6 (p. 5) shows the probability distribution over the four
possible outcomes induced by the two mixed strategies.

H T

H 1=12 1=4

T 1=6 1=2

Figure 6: The probability distribution over outcomes induced by� .

Player 1’s payoffs from these outcomes areu1.H; H/ D u1.T; T / D 1 andu1.H; T / D u1.T; H/ D

�1. Multiplying the payoffs by the probability of obtaining them and summing over (the expected utility
calculation we have done before) yields an expected payoff of1=12.1/ C 1=2.1/ C 1=4.�1/ C 1=6.�1/ D

1That is, the joint probability equals the product of individual probabilities.
2In all cases where we shall calculate mixed strategies, the space of purestrategies will be finite so we do not run into

measure-theoretic problems.
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1=6. Thus, player 1’s expected payoff from the mixed strategy profile� as specified above is1=6. Note
how we first did the multiplication term and then summed over all available pure strategy profiles, while
multiplying by the utility of each. This is exactly what the expression above does. Recalling thatS D

f.H; H/; .H; T /; .T; H/; .T; T /g, we can write:

U1.�/ D
X

s2S

0

@

2
Y

j D1

�j .sj /

1

A u1.s/

D �1.H/�2.H/u1.H; H/ C �1.H/�2.T /u1.H; T /

C �1.T /�2.H/u1.T; H/ C �1.T /�2.T /u1.T; T /

D .1=3/.1=4/.1/ C .1=3/.3=4/.�1/ C .2=3/.1=4/.�1/ C .2=3/.3=4/.1/

D 1=6:

Consider now an example from a game that does involve chance moves, like the Card Game, whose
strategic form is in Fig. 25 (p. 25). Suppose we wanted to know player 2’sexpected payoff from the mixed
strategy profile� D h.1=3; 1=4; 5=12; 0/; .1=3; 2=3/i. That is, for player 1,�1.Rr/ D 1=3, �1.Rf / D 1=4,
�1.F r/ D 5=12, and�1.Ff / D 0, whereas for player 2,�2.m/ D 1=3 and�2.p/ D 2=3. So,

U2.�/ D
X

s2S

0

@

2
Y

j D1

�j .sj /

1

A u2.s/

D �1.Rr/�2.m/u2.Rr; m/ C �1.Rr/�2.p/u2.Rr; p/

C �1.Rf /�2.m/u2.Rf; m/ C �1.Rf /�2.p/u2.Rf; p/

D �1.F r/�2.m/u2.F r; m/ C �1.F r/�2.p/u2.F r; p/

C �1.Ff /�2.m/u2.Ff; m/ C �1.Ff /�2.p/u2.Ff; p/

D .1=3/.1=3/.0/ C .1=3/.2=3/.�1/ C .1=4/.1=3/.0:5/ C .1=4/.2=3/.�1/

D .5=12/.1=3/.�0:5/ C .5=12/.2=3/.0/ C .0/.1=3/.0/ C .0/.2=3/.0/

D �5=12:

If you wanted to compute the probability distribution over the outcomes induced by � , you should get the
result in Tab. 7 (p. 6).

m p

Rr 1=9 2=9

Rf 1=12 1=6

F r 5=36 5=18

Ff 0 0

Figure 7: The probability distribution over outcomes for Fig. 25 (p. 25) induced by� .

As the last example showed, there is no requirement that a mixed strategy putspositive probabilities on
all available pure strategies. Thesupport of a mixed strategy�i is the set of strategies to which�i assigns
positive probability. This means that we can think of a pure strategysi as adegenerate mixed strategy
that assigns probability 1 tosi and 0 to all remaining pure strategies (i.e. the support of a degenerate mixed
strategy consists of a single pure strategy). Acompletely mixed strategyassigns positive probability to
every strategy inSi .3

3Completely mixed strategies are important because a strategy profile of completely mixed strategies assigns positive prob-
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As mentioned in the previous section, we can further reduce some strategic form games. Consider
the game in Fig. 5 (p. 4). Although no other pure strategies are payoff-equivalent, the strategy.b; e/ is
redundant in an important sense. Suppose player 1 were to choose between the strategyA and.b; d/ with
a flip of a fair coin. The resulting randomized strategy can be denoted with� D 0:5ŒA� C 0:5Œb; d �, and
would give the expected payoffs:

U.�; x/ D .0:5/.6; 0/ C .0:5/.0; 8/ D .3; 4/

U.�; y/ D .0:5/.6; 0/ C .0:5/.8; 0/ D .7; 0/:

In other words, we could get the payoffs from.b; e/ from randomizing between the strategiesA and.b; d/.
We formalize this notion as follows:

DEFINITION 5. A strategyOsi 2 Si is randomly redundant if and only if there exists a mixed strategy
�i 2 †i such that�i .Osi / D 0 and

Uj .Osi ; s�i / D
X

si 2Si

�i .si /uj .si ; s�i / 8s�i 2 S�i ; 8j 2 I:

That is each player’s payoffs from the profiles involvingOsi can be expressed as the expected payoffs from
a mixed strategy for playeri that does not haveOsi in its support. In other words,Osi is randomly redundant
if there is some way for playeri to mix his other pure strategies such that no matter what combination of
strategies the other players choose, every player would get the same expected payoff whetheri usesOsi or
mixes in this way.

DEFINITION 6. Thefully reduced normal form of an extensive form game� is obtained from the purely
reduced representation of� by eliminating all randomly redundant strategies.

The fully reduced normal form Fig. 4 (p. 4) (whose purely reduced normal form is in Fig. 5 (p. 4)) is
given in Fig. 8 (p. 7).

Player 1

Player 2
x y

A 6; 0 6; 0

.b; c/ 8; 0 0; 8

.b; d/ 0; 8 8; 0

Figure 8: The Fully Reduced Strategic Form of the Game from Fig. 4 (p. 4).

Consider the example in Fig. 9 (p. 8): how are we to approach something like this to decide whether there
are any strategies that are randomly redundant? Obviously, the only possibilities must involve strategies
for player 1, but which one(s)? We can begin by simple elimination by asking whether any two strategies
can be mixed to eliminate a third one. We cannot eliminateA by any mixture of two or more of the
remaining three pure strategies because player 1’s payoff againstL is negative if he playsA and non-
negative otherwise. Since any mixture ofB, C , andD must yield a non-negative payoff againstA as well,
there is no way to match the payoff fromA. It is also impossible to eliminateB with any combination
of the other three strategies: player 1’s payoff againstL is 3, which is strictly greater than any of the
other payoffs he could get againstL. This means that any mixture ofA, C , andD must yield player 1

ability to every possible outcome in the game. As we shall see later, the fundamental solution concept (Nash equilibrium) will
not produce any odd results in that situation. Problems with Nash equilibrium(in the sense of unreasonable predictions about
optimal behavior) might only occur when the strategy profile induces zero probability for one or more of the possible outcomes.
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an expected payoff strictly less than 3, so they cannot matchB. It is also impossible to eliminateC ; this
time, note that player 2’s payoff againstC when she playsL is �1, which is strictly less than any of her
payoffs against the other three strategies for player 1. This means that any mixture ofA, B, andD must
give player 2 a payoff strictly better than�1 when she choosesL, so it will not be possible to matchC .

Player 1

Player 2
L R

A �1; 0 �1=3; 1=2

B 3; 1=2 �1; 9=8

C 0; �1 1; 0

D 3=4; �1=4 0; 1=2

Figure 9: Less Obvious Example.

All of this means that if there is any randomly redundant strategy for player1, it would have to beD.
What mixture of some combination ofA, B, andC can work? First, note that it cannot be a mixture
betweenA andB by themselves: player 2’s payoff fromL would be non-negative and she must get�1=4

to match her payoff againstD. Can it be a mixture betweenB andC by themselves? Looking at player 1’s
payoffs againstR, we can see that he gets�1 from B and1 from C . There is only one way to match the
payoff of 0 he obtains fromD: mix B andC with equal probabilities. But then player 2’s payoff against
the mixture would be9=16 when she choosesR, which does not match her payoff of1=2 againstD. Hence,
it is not possible to eliminateD with a mixture ofB andC alone.

This leaves us with just one more possibility: mixA, B, andC to eliminateD. If D is randomly-
redundant, then the following system of equations must have a unique solution:

��1.A/ C 3�1.B/ D 3=4

�1=3�1.A/ � �1.B/ C �1.C / D 0

1=2�1.B/ � �1.C / D �1=4

1=2�1.A/ C 9=8�1.B/ D 1=2;

such that�1.A/ C �1.B/ C �1.C / D 1 and�1.a/ 2 .0; 1/ for all a 2 fA; B; C g. From the last equation,
we obtain�1.A/ D 1� 9=4�1.B/. Plugging this into the first equation and multiplying both sides by4 then
gives us�4 C 9�1.B/ C 12�1.B/ D 3, which then yields the solution�1.B/ D 7=21 D 1=3. Plugging this
into the third equation yields1=6 � �1.C / D �1=4, so�1.C / D 5=12. Finally, plugging these two into the
second equation reduces it to�1=3�1.A/ � 1=3 C 5=12 D 0, which implies�1.A/ D 1=4. Of course, since
we know the probabilities must sum up to 1, we could have just computed�1.A/ D 1 � �1.B/ � �1.C /

to obtain the same result. This way, however, we can verify that the sum is unity, so we have not messed
up any of our calculations. We now have the mixed strategy�1 D .1=4; 1=3; 5=12; 0/ which yields the same
expected payoffs to either player asD does againstL, and the same expected payoffs to either player asD

does againstR. Hence,D is randomly redundant and we can safely eliminate it without losing anything
in the process.

One question you may have at this point is what happens if there are more than one randomly-redundant
strategies: would it matter which one gets eliminated first? What if we use some pure strategy to eliminate
another and then eliminate that pure strategy itself: does that mean we have to restore the one we originally
eliminated or is it possible to eliminate it without using that pure strategy? As it turnsout, it does not matter
which order you do the elimination in: if you can eliminate a pure strategyd by a mixed strategy that has
s; s0; ands00 in its support and thens itself gets eliminated by another mixed strategy with onlys0 ands00

in its support, then it is possible to eliminated with a mixed strategy that only hass0 ands00 in its support.
Let’s see an example that illustrates this, so consider Fig. 10 (p. 9).
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L R

A 1; 2 �2; 0

B 0; 3 �1=2; 2

C �1; 4 1; 4

D �1=4; 13=4 �1=8; 5=2

L R

A 1; 2 �2; 0

B 0; 3 �1=2; 2

C �1; 4 1; 4

L R

A 1; 2 �2; 0

C �1; 4 1; 4

Figure 10: Order of Elimination Does Not Matter.

The mixed strategy� D .1=4; 1=4; 1=2; 0/ makesD randomly-redundant in the original game on the
left, producing the reduced normal form in the middle. But then� 0 D .1=2; 0; 1=2/ makesB randomly-
redundant in that intermediate form, producing the fully reduced form on the right. The question then is:
since we usedB to eliminateD in the first step, would we still be able to eliminateD now that weB

itself is gone? That is, do we needB to keepD out? The claim is that sinceB can be eliminated by
A andC , then it should be possible to eliminateD with only these two strategies as well. What is the
appropriate mixture then? Since mixingA andC with equal weights eliminatesB, let’s distribute the
weight onB in the original� evenly toA andC and check if the result can eliminateD. That is, add
1=8 to the probabilities� assigns toA andC to consider� 00 D .3=8; 0; 5=8; 0/ in the original game. It
is straightforward to verify that this strategy makesD randomly redundant: againstL player’s expected
payoff is 3=8 � 5=8 D �2=8 D �1=4 and player 2’s expected payoff is3=8.2/ C 5=8.4/ D 26=8 D 13=4;
analogously, againstR, player 1’s expected payoff is3=8.�2/ C 5=8 D �1=8, and player 2’s expected
payoff is 5=8.4/ D 5=2. This means that we can use� 00 to eliminateD and then� 0 to eliminateB, yielding
the same fully reduced form.

It is sometimes quite tricky to identify randomly redundant strategies. It may be worth your while to try
anyway because by reducing the number of strategies to consider for theanalysis, you will greatly simplify
your task (you will see what I mean when we begin solving the games next time). Unless we explicitly
state otherwise, we shall take thereduced strategic form representationto mean the fully reduced form.

You might wonder why we are eliminating redundant strategies: after all, the ones we remove from
considerations do, in fact, specify ways to play the game and reach possibly different outcomes. For
instance, in the reduced strategic form in Fig. 10 (p. 9), there are no outcomeshD; Li or hD; Ri, which
were both available in the original specification. Aren’t we losing something when we do not consider
them? If there are several redundant strategies, does it not matter whichones we eliminate? The answer is
that for theanalysisof the game, it will not matter. When we find solutions that involve a strategy thathas
other payoff-equivalent ones in the original game, then we will immediately know that the original game
has more solutions: we would obtain those by replacing the strategy with the payoff-equivalent ones we
eliminated. Thus, suppose for instance that in the reduced form we foundsolutions in whichA andC are
played with probability1=2 each. Because we know that this mixed strategy is payoff equivalent to the
pure strategyB, we immediately know that there are solutions in which player 2’s strategy is the same but
player 1 playsB instead of that particular mixed strategy. If, however, the solution involvedA andC with
some other probabilities, then there will be no solutions that involveB. Thus, when we want to provide a
substantive interpretation for the solution, we have to remember the payoff-equivalent strategies.

3 Nash Equilibrium

The most common definition of rationality in game theory is based on the idea that players would choose
strategies that yield the highest expected payoff given what they think theother players are doing; that
is, players would choose thebest responseto their expectations about the behavior of others. Since all
players are “rational” in that sense, they must expect the others to be choosing their best responses as well.
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In other words, all players must be best-responding to each other. When this happens, no player would
have an incentive to change their strategy because, by definition, it cannot be improved upon by any other
strategy. This is why a profile of strategies that are mutual best responses is called anequilibrium , and it
was named in honor of John Nash who proved that most games must have atleast one strategy profile with
that property.

Scholars often refer to particular definitions of rationality assolution concepts, which is presumably
meant to emphasize the fact that any conceptual definition of rationality is oneamong many. Nash equi-
librium is foundational not only because it is the most commonly used one but because it underlies many
stronger definitions of rationality like subgame perfection, perfect Bayesian equilibrium, and so on.

For the remainder of this course, we shall definerational behavior aschoosing the best response to
one’s expectations about the behaviors of others.

3.1 Nash Equilibrium in Pure Strategies

Rational players think about actions that the other players might take, and then choose strategies that
yield the highest expected payoff given their expectations about the others. Such strategies are calledbest
responses(or best replies).

DEFINITION 7. Suppose playeri has some beliefs�i 2 S�i about the strategies played by the other
players. Playeri ’s strategysi 2 Si is abest responseif

ui .si ; s�i / � ui .s
0

i ; s�i / for everys0

i 2 Si :

We now define thebest response correspondence), BRi .s�i /, as the set of best responses playeri has
to s�i . It is important to note that the best response correspondence is set-valued. That is, there may
be more than one best response for any given belief of playeri . If the other players stick tos�i , then
playeri can do no better than using any of the strategies in the setBRi .s�i /. Consider, for example, the
game in Fig. 11 (p. 10): In this game,BR1.L/ D fM g, BR1.C / D fU; M g, andBR1.R/ D fU g. Also,

Player 1

Player 2
L C R

U 2,2 1,4 4,4
M 3,3 1,0 1,5
D 1,1 0,5 2,3

Figure 11: The Best Response Game.

BR2.U / D fC; Rg, BR2.M / D fRg, andBR2.D/ D fC g. You should get used to thinking of the best
response correspondence as a set of strategies, one for each combination of the other players’ strategies.
(This is why we enclose the values of the correspondence in braces even when there is only one element.)

The best response correspondence for a player is a function of theirbeliefs about what the other players
are doing. When the other players are rational in the same sense, these beliefs are not arbitrary: the player
must expect the others to be choosing best responses as well. This allowsus to create a specific solution
concept based on that definition of rationality: a Nash equilibrium is a strategy profile such that each
player’s strategy is a best response to the other players’ strategies:

DEFINITION 8 (NASH EQUILIBRIUM ). The strategy profile.s�

i ; s�

�i / 2 S is apure-strategy Nash equi-
librium (PSNE) if, and only if,s�

i 2 BRi .s
�

�i / for each playeri 2 I.

An equivalent useful way of defining Nash equilibrium is in terms of the payoffs players receive from
various strategy profiles.

10



DEFINITION 9. The strategy profile.s�

i ; s�

�i / is a PSNE if, and only if,ui .s
�

i ; s�

�i / � ui .si ; s�

�i / for each
playeri 2 I and eachsi 2 Si .

That is, for every playeri and every strategysi of that player, the payoff from the profile
˝

s�

i ; s�

�i

˛

is at least
as good as the payoff from the profile

˝

si ; s�

�i

˛

in which playeri choosessi and every other player chooses
s�

�i . In a Nash equilibrium, no playeri has an incentive to choose a different strategy when everyone else
plays the strategies prescribed by the equilibrium. It is quite important to understand that astrategy profile
is a Nash equilibrium if no player has incentive to deviate from his strategy giventhat the other players do
not deviate. When examining a strategy for a candidate to be part of a Nash equilibrium (strategy profile),
we always hold the strategies of all other players constant.4

To understand the definition of Nash equilibrium a little better, suppose there issome playeri , for whom
si is not a best response tos�i . Then, there exists somes0

i such thatui .s
0

i ; s�i / > ui .si ; s�i /. Then this
(at least one) player has an incentive to deviate from the theory’s prediction and these strategies are not
Nash equilibrium.

Another important thing to keep in mind: Nash equilibrium is a strategy profile. Finding a solution to
a game involves finding strategy profiles that meet certain rationality requirements. In strict dominance
we required that none of the players’ equilibrium strategy is strictly dominated. In Nash equilibrium, we
require that each player’s strategy is a best response to the strategies of the other players.

THE PRISONER’ S DILEMMA . By examining all four possible strategy profiles, we see that.D; D/ is the
unique Nash equilibrium (NE). It is NE because (a) given that player 2 choosesD, then player 1 can do
no better than choseD himself (1 > 0); and (b) given that player 1 choosesD, player 2 can do no better
than chooseD himself. No other strategy profile is NE:

� .C; C / is not NE because if player 2 choosesC , then player 1 can profitably deviate by choosing
D (3 > 2). Although this is enough to establish the claim, also note that the profile is not NEfor
another sufficient reason: if player 1 choosesC , then player 2 can profitably deviate by playingD

instead. (Note that it is enough to show that one player can deviate profitably for a profile to be
eliminated.)

� .C; D/ is not NE because if player 2 choosesD, then player 1 can get a better payoff by choosing
D as well.

� .D; C / is not NE because if player 1 choosesD, then player 2 can get a better payoff by choosing
D as well.

Since this exhausts all possible strategy profiles,.D; D/ is the unique Nash equilibrium of the game. It is
no coincidence that the Nash equilibrium is the same as the strict dominance equilibrium we found before.
In fact, a player will never use a strictly dominated strategy in a Nash equilibrium. Further, if a game is
dominance solvable, then its solution is the unique Nash equilibrium.

How do we use best responses to find Nash equilibria? We proceed in two steps: First, we determine the
best responses of each player, and second, we find the strategy profiles where strategies are best responses
to each other.

For example, consider again the game in Fig. 11 (p. 10). We have already determined the best responses
for both players, so we only need to find the profiles where each is best response to the other. An easy
way to do this in the bi-matrix is by going through the list of best responses andmarking the payoffs with

4There are several ways to motivate Nash equilibrium. Osborne offersthe idea of social convention and Gibbons justifies it
on the basis of self-enforcing predictions. Each has its merits and there are others (e.g. steady state in an evolutionary game). You
should become familiar with these.
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a ’*’ for the relevant player where a profile involves a best response. Thus, we mark player 1’s payoffs
in .U; C /, .U; R/, .M; L/, and.M; C /. We also mark player 2’s payoffs in.U; C /, .U; R/, .M; R/, and
.D; C /. This yields the matrix in Fig. 12 (p. 12).

Player 1

Player 2
L C R

U 2,2 1*,4* 4*,4*
M 3*,3 1*,0 1,5*
D 1,1 0,5* 2,3

Figure 12: The Best Response Game Marked.

There are two profiles with stars for both players,.U; C / and.U; R/, which means these profiles meet
the requirements for NE. Thus, we conclude this game has two pure-strategy Nash equilibria.

3.1.1 Diving Money

(Osborne, 38.2) Two players have $10 to divide. Each names an integer0 � k � 10. If k1 C k2 � 10,
each getski . If k1 C k2 > 10, then (a) ifk1 < k2, player 1 getsk1 and player 2 gets10 � k1; (b) if
k1 > k2, player 1 gets10 � k2 and player 2 getsk2; and (c) ifk1 D k2, each player gets $5.

Instead of constructing11 � 11 matrix and using the procedure above, we shall employ an alternative,
less cumbersome notation. We draw a coordinate system with 11 marks on eachof the abscissa and the
ordinate. We then identify the best responses for each player given any of the 11 possible strategies of his
opponent. We mark the best responses for player 1 with a circle, and the best responses for player 2 with
a smaller disc.

s2

s1
0 1 2 3 4 5 6 7 8 9 10
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❞
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❞

❞

❞

❞q q q q q q

q q q q q

q q q q

q q q

q q

q q

q q

q

q

q

Figure 13: Best Responses in the Dividing Money Game.

Looking at the plot makes clear which strategies are mutual best responses. This game has 4 Nash
equilibria in pure strategies:.5; 5/, .5; 6/, .6; 5/, and.6; 6/. The payoffs in all of these are the same: each
player gets $5.
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Alternatively, we know that players never use strictly dominated strategies.Observe now that playing
any number less than 5 is strictly dominated by playing 5. To see that, suppose0 � k1 � 4. There are
several cases to consider:

� if k2 � k1, thenk1 C k2 < 10 and player 1 getsk1; if he plays 5 instead,5 C k2 < 10 and he gets
5, which is better;

� if k2 > k1 andk1 C k2 > 10 (which impliesk2 > 6), then he getsk1; if he plays 5 instead,
5 C k2 > 10 as well and sincek2 > k1 he gets 5, which is better;

� if k2 > k1 andk1 C k2 � 10, then he getsk1; if he plays 5 instead, then:

– if 5 C k2 � 10, he gets 5, which is better;

– if 5 C k2 > 10, thenk1 < k2, so he also gets 5, which is better.

In other words, player 1 can guarantee itself a payoff of 5 by playing 5,and any of the strategies that involve
choosing a lower number give a strictly lower payoff regardless of whatplayer 2 chooses. A symmetric
argument for player 2 establishes that0 � k2 � 4 is also strictly dominated by choosingk2 D 5. We
eliminate these strategies, which leaves a6 � 6 payoff matrix to consider (not a bad improvement, we’ve
gone from 121 cells to “only” 36). At this point, we can re-do the plot by restricting it to the numbers
above 4 or we can continue the elimination. Observe thatki D 10 is weakly dominated byki D 9:
playing 10 against 10 yields 5 but playing 9 against 10 yields 9; playing 10 against 9 yields 1, but playing
9 against 9 yields 5; playing 10 against any number between 5 and 8 yields the same payoff as playing 9
against that number. If we eliminate 10 because it is weakly dominated by 9, then 9 itself becomes weakly
dominated by 8 (that’s because the only case where 9 gets a better payoff than 8 is when it’s played against
10). Eliminating 9 makes 8 weakly dominated by 7, and eliminating 8 makes 7 weakly dominated by 6.
At this point, we’ve reached a stage where no more elimination can be done. The game is a simple2 � 2

shown in Fig. 14 (p. 13).

$5 $6
$5 5; 5 5; 5

$6 5; 5 5; 5

Figure 14: The Game after Elimination of Strictly and Weakly Dominated Strategies.

It should be clear from inspection that all four strategy profiles are Nash equilibria. It may appear that
IEWDS is not problematic here because we end up with the same solution. However, (unfortunately) this
is not the case. Observe that once we eliminate the strictly dominated strategies,we could have also noted
that 6 weakly dominates 5. To see this, observe that playing 5 always guarantees a payoff of 5. Playing 6
also gives a payoff of 5 against either 5 or 6 but then gives a payoff of 6 against anything between 7 and 10.
Using this argument, we can eliminate 5. We can then apply the IEWDS as before, starting from 10 and
working our way down the list until we reach 6. At this point, we are left with auniqueprediction:h6; 6i.
In other words, if we started in this way, we would have missed three of the PSNE. This happens because
starting IEWDS at 10 eventually causes 5 to cease to be weakly dominated by 6, so we cannot eliminate it.
This also shows that it’s quite possible to use weakly dominated strategies in a Nash equilibrium (unlike
strictly dominated ones).

Still, the point should be clear even when we restrict ourselves to the safe IESDS: by reducing the game
from one with 121 outcomes to one with 36, can save ourselves a lot of analysis with a little bit of thought.
Always simplify games (if you can) by finding at least strictly dominated strategies. Going into weakly
dominated strategies may or may not be a problem, and you will have to be much more careful there.
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Usually, it would be too dangerous to do IEWDS because you are likely to missPSNEs.5 In this case, you
could re-do Fig. 13 (p. 12) with onlysi � 5 to get all four solutions.

3.1.2 The Partnership Game

There is a firm with two partners. The firm’s profit depends on the efforteach partner expends on the job
and is given by�.x; y/ D 4.x C y C cxy/, wherex is the amount of effort expended by partner 1 andy

is the amount of effort expended by partner 2. Assume thatx; y 2 Œ0; 4�. The valuec 2 Œ0; 1=4� measures
how complementary the tasks of the partners are. Partner 1 incurs a personal costx2 of expending effort,
and partner 2 incurs costy2. Each partner selects the level of his effort independently of the other,and
both do so simultaneously. Each partner seeks to maximize their share of the firm’s profit (which is split
equally) net of the cost of effort. That is, the payoff function for partner 1 isu1.x; y/ D �.x; y/=2 � x2,
and that for partner 2 isu2.x; y/ D �.x; y/=2 � y2.

The strategy spaces here are continuous and we cannot construct a payoff matrix. (Mathematically,
S1 D S2 D Œ0; 4� and4S D Œ0; 4� � Œ0; 4�.) We can, however, analyze this game using best response
functions. Let Oy represent some belief partner 1 has about the other partner’s effort.In this case, partner
1’s payoff will be2.x C Oy Ccx Oy/�x2. We need to maximize this expression with respect tox (recall that
we are holding partner’s two strategy constant and trying to find the optimal response for partner 1 to that
strategy). Taking the derivative yields2C2c Oy �2x. Setting the derivative to 0 and solving forx yields the
best responseBR1. Oy/ D f1 C c Oyg. Going through the equivalent calculations for the other partner yields
his best response functionBR2. Ox/ D f1 C c Oxg.

We are now looking for a strategy profile.x�; y�/ such thatx� D BR1.y�/ andy� D BR2.x�/. (We
can use equalities here because the best response functions producesingle values!) To find this profile, we
solve the system of equations:

x� D 1 C cy�

y� D 1 C cx�:

The solution isx� D y� D 1=.1 � c/. Thus, this game has a unique Nash equilibrium in pure strategies,
in which both partners expend1=.1 � c/ worth of effort.

3.1.3 Modified Partnership Game

Consider now a game similar to that in the preceding example. Let effort be restricted to the intervalŒ0; 1�.
Let p D 4xy, and let the personal costs bex andy respectively. Thus,u1.x; y/ D 2xy � x D x.2y � 1/

andu2.x; y/ D y.2x � 1/. We find the best response functions for partner 1 (the other one is the same).
If y < 1=2, then, since2y � 1 < 0, partner 1’s best response is 0. Ify D 1=2, then2y � 1 D 0, and partner
1 can choose any level of effort. Ify > 1=2, then2y � 1 > 0, so partner 1’s optimal response is to choose
1. This is summarized below:

BR1.y/ D

8

ˆ

<

ˆ

:

0 if y < 1=2

Œ0; 1� if y D 1=2

1 if y > 1=2

SinceBR2.x/ is the same, we can immediately see that there are three Nash equilibria in pure strategies:
.0; 0/, .1; 1/, and.1=2; 1=2/ with payoffs.0; 0/, .1; 1/, and.0; 0/ respectively. Let’s plot the best response
functions, just to see this result graphically in Fig. 15 (p. 15). The three discs at the points where the best
response functions intersect represent the three pure-strategy Nash equilibria we found above.

5As I did when I improvised IEWDS in this example in class.
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BR1.y/

BR2.x/

Figure 15: Best Responses in the Modified Partnership Game.

3.2 Strict Nash Equilibrium

Consider the game in Fig. 16 (p. 15). (Its story goes like this. The setting is theSouth Pacific in 1943.
Admiral Kimura has to transport Japanese troops across the Bismarck Seato New Guinea, and Admiral
Kenney wants to bomb the transports. Kimura must choose between a shorterNorthern route or a longer
Southern route, and Kenney must decide where to send his planes to look for the transports. If Kenney
sends the plans to the wrong route, he can recall them, but the number of days of bombing is reduced.)

Kenney

Kimura
N S

N 2; �2 2; �2

S 1; �1 3; �3

Figure 16: The Battle of Bismarck Sea.

This game has a unique Nash equilibrium, in which both choose the northern route, .N; N /. Note,
however, that if Kenney playsN , then Kimura is indifferent betweenN andS (because the advantage of
the shorter route is offset by the disadvantage of longer bombing raids).Still, the strategy profile.N; N /

meets the requirements of NE. This equilibrium is not strict.
More generally, an equilibrium is strict if, and only if, each player has a unique best response to the

other players’ strategies:

DEFINITION 10. A strategy profile.s�

i ; s�

�i / is astrict Nash equilibrium if for every playeri , ui .s
�

i ; s�

�i / >

ui .si ; s�

�i / for every strategysi ¤ s�

i .

The difference from the original definition of NE is only in the strict inequalitysign.
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3.3 Nash Equilibrium in Mixed Strategies

The most common example of a game with no Nash equilibrium in pure strategies is MATCHING PENNIES,
which is given in Fig. 17 (p. 16).

Player 1

Player 2
H T

H 1; �1 �1; 1

T �1; 1 1; �1

Figure 17: Matching Pennies.

This is a strictly competitive (zero-sum) situation, in which the gain for one player is the loss of the
other.6 This game has no Nash equilibrium in pure strategies. Let’s consider mixed strategies.

We first extend the idea of best responses to mixed strategies: LetBRi .��i / denote playeri ’s best
response correspondence when the others play��i . The definition of Nash equilibrium is analogous to the
pure-strategy case:

DEFINITION 11. A mixed strategy profile�� is a mixed-strategy Nash equilibrium (MSNE) if, and
only if, ��

i 2 BRi .�
�

�i /.

As before, a strategy profile is a Nash equilibrium whenever all players’strategies are best responses to
each other. For a mixed strategy to be a best response, it must put positive probabilities only on pure strate-
gies that are best responses. Mixed strategy equilibria, like pure strategy equilibria, never use dominated
strategies.

Turning now to Matching Pennies, let�1 D .p; 1 � p/ denote a mixed strategy for player 1 where he
choosesH with probabilityp, andT with probability1 � p. Similarly, let�2 D .q; 1 � q/ denote a mixed
strategy for player 2 where she choosesH with probabilityq, andT with probability1�q. We now derive
the best response correspondence for player 1 as a function of player 2’s mixed strategy.

Player 1’s expected payoffs from his pure strategies given player 2’s mixed strategy are:

U1.H; �2/ D .1/q C .�1/.1 � q/ D 2q � 1

U1.T; �2/ D .�1/q C .1/.1 � q/ D 1 � 2q:

PlayingH is a best response if, and only if:

U1.H; �2/ � U1.T; �2/

2q � 1 � 1 � 2q

q � 1=2:

Analogously,T is a best response if, and only if,q � 1=2. Thus, player 1 should choosep D 1 if
q � 1=2 andp D 0 if q � 1=2. Note now that wheneverq D 1=2, player 1 is indifferent between his
two pure strategies: choosing either one yields the same expected payoff of 0. Thus, both strategies are
best responses, which implies that any mixed strategy that includes both of them in its support is a best
response as well. Again, the reason is that if the player is getting the same expected payoff from his two
pure strategies, he will get the same expected payoff from any mixed strategy whose support they are.

6It is these zero-sum games that von Neumann and Morgenstern studiedand found solutions for. However, Nash’s solution
can be used in non-zero-sum games, and is thus far more general and useful.
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Analogous calculations yield the best response correspondence for player 2 as a function of�1. Putting
these together yields:

BR1.q/ D

8

ˆ

<

ˆ

:

0 if q < 1=2

Œ0; 1� if q D 1=2

1 if q > 1=2

BR2.p/ D

8

ˆ

<

ˆ

:

0 if p > 1=2

Œ0; 1� if p D 1=2

1 if p < 1=2

The graphical representation of the best response correspondences is in Fig. 18 (p. 17). The only place
where the randomizing strategies are best responses to each other is at the intersection point, where each
player randomizes between the two strategies with probability1=2. Thus, the Matching Pennies game has
a unique Nash equilibrium in mixed strategies

˝

��

1 ; ��

2

˛

, where��

1 D .1=2; 1=2/, and��

2 D .1=2; 1=2/. That
is, wherep D q D 1=2.

q

p
0 1

1

1=2

1=2
①

BR1.q/

BR2.p/

Figure 18: Best Responses in Matching Pennies.

As before, the alternative definition of Nash equilibrium is in terms of the payoff functions. We require
that no player can do better by using any other strategy than the one he uses in the equilibrium mixed
strategy profile given that all other players stick to their mixed strategies. Inother words, the player’s
expected payoff of the MSNE profile is at least as good as the expected payoff of using any other strategy.

DEFINITION 12. A mixed strategy profile�� is a MSNE if, and only if, for all playersi ,

ui .�
�

i ; ��

�i / � ui .si ; ��

�i / for all si 2 Si :

Since expected utilities are linear in the probabilities, if a player uses a non-degenerate mixed strategy in
a Nash equilibrium, then they must be indifferent between all pure strategiesto which they assign positive
probability. This is why we only need to check for a profitable pure strategydeviation. (Note that this
differs from Osborne’s definition, which involves checking against profitable mixed strategy deviations.)

The fact that a player who is willing to mix in MSNE must be indifferent among the pure strategies used
with positive probability raises several questions about this definition of rationality. First, many scholars
(myself included) are uncomfortable with the idea that players randomize theiractions. Second, even when
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players are indifferent among several pure strategies, it is unclear why they should be randomizing with
the distribution required by MSNE. Third, it appears that the other playersare choosing their strategies in
order to make the player uncertain, and so able to mix, which seems like an odd thing to do.

We shall have an occasion to discuss these at length later in the course. For now, I will note that it is
possible to interpret mixed strategies in a way that alleviates both concerns. The idea behind MSNE is not
that a player is randomizing but that the other players cannot predict with certainty what that player will
do. The player could be choosing a pure strategy – based, perhaps, on factors known only to that player –
as long as the other players do not know what these factors are, that player’s behavior will appear random
to them. Their expectations about the distribution of these random acts anchor their own best responses
— if it were different, then their own behavior would change. In other words, nobody is picking strategies
at random in a way to make others indifferent. The distribution reflects the type of uncertainty necessary
to rationalize the best responses of the other players; that is, it reflects what beliefs they must have about
the strategy of the player that they are uncertain about. It is now easy to understand why a player whose
behavior appears unpredictable to the others must be expected by them to be indifferent among the pure
strategies used with positive probability: if this were not the case, then therewould exist a strategy that is
a best response, and the others must expect that player to choose it; i.e.,they cannot be uncertain.

3.3.1 Battle of the Sexes

Let’s model a situation where two players,i 2 f1; 2g, want to decide between two types of entertainment
to which they want to go together but the decision must be made without knowledge of what the other
will do (say they are in their offices and the phones are down so they cannot communicate beforehand).
The two available pieces of entertainment for the night are a boxing match (fight) and a ballet. For each
player then, the set of actions consists of (1) go to the fight, or (2) go to theballet. Note that the actions
are exhaustive and mutually exclusive. This means that each player has two pure strategies, so the set is
called thestrategy spacefor the player.

Continuing with the example, the strategy profile then consists of one strategy for each of the two
players. This gives us four different strategy profiles: (1) player 1goes to the fight, player 2 goes to the
fight; (2) player 1 goes to the fight, player 2 goes to the ballet; (3) player 1 goes to the ballet, player 2 goes
to the fight; and (4) player 1 goes to the ballet, player 2 goes to the ballet. We shall specify an outcome
(strategy profile) by listing first the strategy for player 1 and then the strategy for player 2. Thus, the
four outcomes above can be written as (1)(Fight, Fight); (2) (Fight, Ballet); (3) (Ballet, Fight); and (4)
(Ballet,Ballet).

Since each strategy profile produces a different outcome in this game, the game has 4 possible outcomes,
in 2 of which the players go together to the same place, and 2 in which they fail tocoordinate. Each player
has (ordinal) preferences over these four outcomes. In other words, each player ranks these outcomes
according to their desirability using some criterion. As we know, if preferences are rational, we can
represent them numerically. Hence, we use appropriate numbers whoseordinal ranking represents the
preferences as payoffs. Each outcome then consists of two elements which specify the payoff for each
player for this outcome. This is often called thepayoff vector.

Player 1 prefers going to the fight whereas player 2 prefers going to theballet.7 However, both prefer to
go together regardless of the type of entertainment. Their worst outcome is when they end up alone at any
of the places and it does not matter which place they happen to be at. Thus, player 1’s preference ordering

7In the original game, player 1 was a man and player 2 was a woman. There is now a more politically-correct version of
the BoS game, calledBach or Stravinsky, which involves two sexless players deciding between concerts of music by the two
composers. Since any rational person with taste would clearly choose Stravinsky, I find that version uninteresting.
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is:
.F; F / � .B; B/ � .F; B/ � .B; F /

and player 2’s preference ordering is:

.B; B/ � .F; F / � .F; B/ � .B; F /

Now that we have specified the ordinal rankings, we need to choose a payoff function to represent the
orderings. Denote player 1’s utility function byu1, and player 2’s utility function byu2. We need two
functions such that:

u1.F; F / > u1.B; B/ > u1.F; B/ D u1.B; F /

u2.B; B/ > u2.F; F / > u2.F; B/ D u2.B; F /:

One possible and simple specification is

u1.F; F / D u2.B; B/ D 2

u1.B; B/ D u2.F; F / D 1

u1.F; B/ D u1.B; F / D u2.F; B/ D u2.B; F / D 0:

A convenient way of describing the (finite) strategy spaces of the players and their payoff functions for
two-player games is to use a bi-matrix,8 as illustrated in Fig. 19 (p. 19).

Player 1

Player 2
F B

F 2,1 0,0
B 0,0 1,2

Figure 19: Battle of the Sexes.

Note: the Battle of the Sexes game represents a situation where players must coordinate their actions but
where they have opposed preferences over the coordinated outcomes. We shall see two other types of co-
ordination games: pure coordination (where players only care about coordinating) and Pareto coordination
(where both strictly prefer one of the coordinated outcomes to the other).

Recall that although we call this asimultaneous-movesgame, it is not necessary for players to actually
act at the same time. All that is required is that each player acts with no knowledge about how the other
player acts. In our BoS game, this can be achieved by requiring the players to make their choices without
having access to a communication device.

As a first step, we plot each player’s expected payoff from each of the pure strategies as a function of
the other player’s mixed strategy. Letp denote the probability that player 1 choosesF , and letq denote
the probability that player 2 choosesF . Player 1’s expected payoff fromF is then2q C 0.1 � q/ D 2q,
and his payoff fromB is 0q C 1.1 � q/ D 1 � q. Since2q D 1 � q wheneverq D 1=3, the two lines
intersect there.

Looking at the plot in Fig. 20 (p. 20) makes it obvious that for anyq < 1=3, player 1 has a unique best
response in playing the pure strategyB, for q > 1=3, his best response is again unique and it is the pure
strategyF , while atq D 1=3, he is indifferent between his two pure strategies, which also implies he will

8This is just like a regular matrix except each entry consists of two numbersinstead of one.
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Figure 20: Player 1’s Expected Payoffs as a Function of Player 2’s Mixed Strategy.

be indifferent between any mixing of them. Thus, we can specify player 1’s best response (in terms ofp):

BR1.q/ D

8

ˆ

<

ˆ

:

0 if q < 1=3

Œ0; 1� if q D 1=3

1 if q > 1=3

We now do the same for the expected payoffs of player 2’s pure strategies as a function of player 1’s
mixed strategy. Her expected payoff fromF is 1p C 0.1 � p/ D p and her expected payoff fromB is
0p C 2.1 � p/ D 2.1 � p/. Noting thatp D 2.1 � p/ wheneverp D 2=3, we should expect that the plots
of her expected payoffs from the pure strategies will intersect atp D 2=3. Indeed, Fig. 21 (p. 21) shows
that this is the case.

Looking at the plot reveals that player 2 strictly prefers playingB wheneverp < 2=3, strictly prefers
playing F wheneverp > 2=3, and is indifferent between the two (and any mixture of them) whenever
p D 2=3. This allows us to specify her best response (in terms ofq):

BR2.p/ D

8

ˆ

<

ˆ

:

0 if p < 2=3

Œ0; 1� if p D 2=3

1 if p > 2=3

Having derived the best response correspondences, we can plot them in thep � q space, which is done
in Fig. 22 (p. 21). The best response correspondences intersect inthree places, which means there are
three mixed strategy profiles in which the two strategies are best responsesof each other. Two of them
are in pure-strategies: the degenerate mixed strategy profilesh1; 1i andh0; 0i. In addition, there is one
mixed-strategy equilibrium,

h.2=3ŒF �; 1=3ŒB�/ ; .1=3ŒF �; 2=3ŒB�/i :

In the mixed strategy equilibrium, each outcome occurs with positive probability.To calculate the corre-
sponding probability, multiply the equilibrium probabilities of each player choosing the relevant action.
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Figure 21: Player 2’s Expected Payoffs as a Function of Player 1’s Mixed Strategy.

q

p
0 1

1

2=3

1=3 ①

①

①

BR1.q/

BR2.p/

Figure 22: Best Responses in Battle of the Sexes.

This yields Pr.F; F / D 2=3 � 1=3 D 2=9, Pr.B; B/ D 1=3 � 2=3 D 2=9, Pr.F; B/ D 2=3 � 2=3 D 4=9,
and Pr.B; F / D 1=3 � 1=3 D 1=9. Thus, player 1 and player 2 will meet with probability4=9 and fail to
coordinate with probability5=9. Obviously, these probabilities have to sum up to 1. Both players’ expected
payoff from this equilibrium is.2/2=9 C .1/2=9 D 2=3.

3.4 Computing Nash Equilibria

Remember that a mixed strategy�i is a best response to��i if, and only if, every pure strategy in the
support of�i is itself a best response to��i . Otherwise playeri would be able to improve his payoff by
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shifting probability away from any pure strategy that is not a best response to any that is.
This further implies that in a mixed strategy Nash equilibrium, where��

i is a best response to��

�i for
all playersi , all pure strategies in the support of��

i yield the same payoff when played against��

�i , and
no other strategy yields a strictly higher payoff. We now use these remarksto characterize mixed strategy
equilibria.

REMARK 1. In any finite game, for every playeri and a mixed strategy profile� ,

Ui .�/ D
X

si 2Si

�i .si /Ui .si ; ��i /:

That is, the player’s payoff to the mixed strategy profile is the weighted average of his expected payoffs
to all mixed strategy profiles where he plays every one of his pure strategies with a probability specified
by his mixed strategy�i .

For example, returning to the BoS game, consider the strategy profile.1=4; 1=3/. Player 1’s expected
payoff from this strategy profile is:

U1.1=4; 1=3/ D .1=4/ U1.F; 1=3/ C .3=4/ U1.B; 1=3/

D .1=4/ Œ.2/1=3 C .0/2=3� C .3=4/ Œ.0/1=3 C .1/2=3�

D 2=3

To see that this is equivalent to computingU1 “directly,” observe that the outcome probabilities given this
strategy profile are shown in Fig. 23 (p. 22).

F B

F 1=12 2=12

B 3=12 6=12

Figure 23: Outcome Probabilities forh1=4; 1=3i.

Using these makes computing the expected payoff very easy:

U1.1=4; 1=3/ D 1=12.2/ C 2=12.0/ C 3=12.0/ C 6=12.1/ D 8=12 D 2=3;

which just verifies (for our curiosity) that Remark 1 works as advertised.
The property in Remark 1 allows us to check whether a mixed strategy profile isan equilibrium by

examining each player’s expected payoffs to his pure strategies only. (Recall that the definition of MSNE
I gave you is actually stated in precisely these terms.) Observe in the example above that if player 2 uses
her equilibrium mixed strategy and choosesF with probability 1=3, then player 1’s expected payoff from
either one of his pure strategies is exactly the same:2=3. This is what allows him to mix between them
optimally. In general, a player will be willing to randomize among pure strategies only if he is indifferent
among them.

PROPOSITION1. For any finite game, a mixed strategy profile�� is a MSNE if, and only if, for each
playeri

1. Ui .si ; ��

�i / D Ui .sj ; ��

�i / for all si ; sj 2 supp.��

i /

2. Ui .si ; ��

�i / � Ui .sk; ��

�i / for all si 2 supp.��

i / and all sk … supp.��

i /. ✷
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That is, the strategy profile�� is a MSNE if for every player, the payoff from any pure strategy in the
support of his mixed strategy is the same, and at least as good as the payoff from any pure strategy not
in the support of his mixed strategy when all other players play their MSNE mixed strategies. In other
words, if a player is randomizing in equilibrium, he must be indifferent among all pure strategies in the
support of his mixed strategy. It is easy to see why this must be the case by supposing that it must not.
If he player is not indifferent, then there is at least one pure strategy in the support of his mixed strategy
that yields a payoff strictly higher than some other pure strategy that is also inthe support. If the player
deviates to a mixed strategy that puts a higher probability on the pure strategy that yields a higher payoff,
he will strictly increase his expected payoff, and thus the original mixed strategy cannot be optimal; i.e. it
cannot be a strategy he uses in equilibrium.

Clearly, a Nash equilibrium that involves mixed strategies cannot be strict because if a player is willing
to randomize in equilibrium, then he must have more than one best response. In other words, strict Nash
equilibria are always in pure strategies.

We also have a very useful result analogous to the one that states that noplayer uses a strictly dominated
strategy in equilibrium. That is, a dominated strategy is never a best response to any combination of mixed
strategies of the other players.

PROPOSITION2. A strictly dominated strategy is not used with positive probability in any MSNE.✷

Proof. Suppose that
˝

��

1 ; ��

�i

˛

is MSNE and��

1 .s1/ > 0 but s1 is strictly dominated bys0

1. Suppose
first that��

1 .s0

1/ > 0 as well. Since boths1 ands0

1 are used with positive probability in MSNE, it follows
thatU1.s1; ��

�i / D U1.s0

1; ��

�i /, which contradicts the fact thats0

1 strictly dominatess1. Suppose now that
��

1 .s0

1/ D 0 but then MSNE implies thatU1.s1; ��

�i / � U1.s0

1; ��

�i /, which also contradicts the fact that
s0

1 strictly dominatess1. �

This means that when we are looking for mixed strategy equilibria, we can eliminate from consideration
all strictly dominated strategies. It is important to note that, as in the case of purestrategies,we cannot
eliminate weakly dominated strategies from considerationwhen finding mixed strategy equilibria (because
a weakly dominated strategycanbe used with positive probability in a MSNE).

3.4.1 Myerson’s Card Game

Consider the following game from Roger Myerson.

EXAMPLE 1. (MYERSON’ S CARD GAME .) There are two players, labeled “player 1” and “player 2.”9 At the beginning of
this game, each player puts a dollar in a pot. Next, player 1 draws a card from a shuffled deck of cards in which half the cards are
red and half are black. Player 1 looks at his card privately and decideswhether to raise or fold. If player 1 folds, then he shows
his card to player 2 and the game ends; player 1 takes the money in the pot ifthe card is red, but player 2 takes the money if the
card is black. If player 1 raises, then he adds another dollar to the pot and player 2 must decide whether meet or pass. If she
passes, the game ends and player 1 takes all the money in the pot. If she meets, she puts another dollar in the pot, and then player
1 shows his card to player 2 and the game ends; if the card is red, player 1takes all the money in the pot, but if it is black, player
2 takes all the money.

The extensive form of this game is in Fig. 24 (p. 24).
Let us convert this to strategic form. von Neumann and Morgenstern suggested a procedure for simplify-

ing games in extensive form by constructing the strategic formG of any�. This is done in an algorithmic
way. First, we find all pure strategies for the players. Next, we construct the expected outcomes for all

9We establish the following convention: odd-numbered players are male, and even-numbered players are female. For a generic
player, we shall always use the generic male pronoun.
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Figure 24: Myerson’s Card Game: Extensive Form.

strategy profiles. Finally, we redefine the utility functions on the outcomes to beutility functions on the
profiles with expected outcomes.

Consider the following scenario. The two players are going to play this tomorrow and today they have
to plan their moves in advance. Player 1 does not know the color that he will draw but he can condition his
strategy on the card color because he knows that he will see it before choosing whether to raise or fold. As
we have seen, he has four pure strategies,S1 D fRr; Rf; F r; Ff g. Player 2, on the other hand, will only
ever get to move if player 1 raises, so her pure strategies areS2 D fm; pg. The strategy profiles are:

S D S1 � S2 D

�

hRr; mi ; hRr; pi ; hRf; mi ; hRf; pi ; hF r; mi ; hF r; pi ; hFf; mi ; hFf; pi

�

:

We now have to define the expected utility functions for the player. Recall that originally, we defined the
utility functions directly in terms of the outcome. However, even if we knew herewhich strategy profile
will be realized (that is, what strategy each player has chosen), we cannot predict the actual outcome of
the game because it will depend on the color of the card, which is a chance move. For example, suppose
player 1 has chosen the strategyF r and player 2 has chosenm, and so the strategy profile ishF r; mi. The
outcome will be folding by player 1 if the card is black, and raising by player 1and meeting by player 2 if
the card is red. Player 1’s payoff will be�1 if the card is black, and2 if the card is red.

So what payoff should player 1 expect from the profilehF r; mi? Its expected payoff, of course. Choos-
ing the strategyF r given that player 2 will be choosingm is equivalent to choosing a lottery, in which
player 1 would get�1 with probability 0:5, and2 with probability 0:5. We know how to compute the
expected utility in this case:

U1.F r; m/ D 1=2 � u1.black; F / C 1=2 � u1.red; r; m/ D 1=2 � .�1/ C 1=2 � .2/ D 0:5:

In analogous manner, we would compute player 2’s expected payoff:

U2.F r; m/ D 1=2 � u2.black; F / C 1=2 � u2.red; r; m/ D 1=2 � .1/ C 1=2 � .�2/ D �0:5:

Continuing in this way, we define the expected utility functions for the two players on all strategy profiles,
and arrive the the normal form representation of this game of uncertainty shown in Fig. 25 (p. 25).

The strategic game in Fig. 25 (p. 25) describes how the utilities of the players depend on the strategies
they chooseat the beginning of the game. We know from our expected utility theorem that a player
would choose the strategy that yields the highest expected payoff because this would be consistent with
his preferences. In other words, players will make choices that maximize their expected payoff.

In general, given any extensive form game�, its normal form representationG can be constructed as
follows. The set of players remains the same. For any playeri 2 I, let the set of strategiesSi in the
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Player 1

Player 2
m p

Rr 0; 0 1; �1

Rf �0:5; 0:5 1; �1

F r 0:5; �0:5 0; 0

Ff 0; 0 0; 0

Figure 25: The Strategic Form of the Game from Fig. 24 (p. 24).

normal form game be the same as the set of strategies in the extensive form. For any strategy profiles 2 S

and any nodex in the tree of�, defineP.xjs/ to be the probability that the path of play will go through
nodex, when the path of play starts at the initial node, and at any decision node in the path, the next node
is determined by the relevant player’s strategy ins, and, at any node where nature moves, the next node is
determined by the probability distribution given in�. At any terminal nodé 2 Z, let ui .´/ be playeri ’s
payoff from outcomé . Then, for any strategy profiles 2 S and anyi 2 I, let Ui .s/ be:

Ui .s/ D
X

´2Z

P.´js/ui .´/:

That is,Ui .s/ is playeri ’s expected utility if all players implement the strategies according tos. If G is
derived from� in this way, it is called thestrategic (normal) form representationof �.

The first step in solving for Nash equilibrium (either in pure or mixed strategies) should always be
the elimination of any strictly dominated strategies. In this game, no pure strategy isstrictly dominated
by another pure strategy. However, the strategys1 D Ff is strictly dominated by the mixed strategy
�1 D .0:5/ŒRr� C .0:5/ŒF r�:

U1.�1; m/ D .0:5/.0/ C .0:5/.0:5/ D 0:25 > 0 D U1.s1; m/

U1.�1; p/ D .0:5/.1/ C .0:5/.0/ D 0:5 > 0 D U1.s1; p/:

In other words, playing�1 yields a higher expected payoff thans1 does against any possible strategy for
player 2. Therefore,s1 is strictly dominated by�1, and we should not expect player 1 to plays1. On the
other hand, the strategyF r only weakly dominatesFf because it yields a strictly better payoff againstm

but the same payoff againstp.10

In general, if�i strictly dominatessi and�i .si / D 0, then we can eliminatesi . Note that in addition to
strict dominance, we also require that the strictly dominant mixed strategy assigns zero probability to the
strictly dominated pure strategy before we can eliminate that pure strategy. The reason for that should be
clear: if this were not the case, then we would be eliminating a pure strategy witha mixed strategy, which
assumes that this pure strategy would actually be played. Of course, if we eliminate si , then this can no
longer be the case—we are, in effect, eliminating all mixed strategies that havesi in their supports as well.

After eliminatingFf , we end up with the reduced strategic form of the game:
It is clear by inspection that this game has no PSNE, so let’s look for one in mixed strategies. Letq

denote the probability with which player 2 choosesm, and1�q be the probability with which she chooses
p. We now show that in equilibrium player 1 would not playRf with positive probability.11

10How did we know to try this mixed strategy? Notice thatFf is weakly dominated byF r andRr , and strictly dominated
by F r againstm and byRr againstp. This means that mixing (in any way, actually) betweenF r andRr would yield a strictly
higher payoff against eitherm or p.

11How do we know to show that? Even though one cannot safely eliminate weakly dominated strategies from consideration
for inclusion in Nash equilibrium, they often can be eliminated with equilibrium reasoning. That is, by supposing that they are
being used with positive probability and finding a contradiction in the assumption that the strategy is a best response. Sometimes
this exercise allows us to eliminate weakly dominated strategies, and sometimesit does not. Here, it does.
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Player 1

Player 2
m p

Rr 0; 0 1; �1

Rf �1=2; 1=2 1; �1

F r 1=2; �1=2 0; 0

Figure 26: Myerson’s Card Game: Reduced Strategic Form.

Suppose that��

1 .Rf / > 0; that is, player 1 usesRf in some MSNE. There are now three possi-
ble mixtures that could involve this: (i) supp.��

1 / D fRr; Rf; F rg, (ii) supp.��

1 / D fRr; Rf g, or (iii)
supp.��

1 / D fRf; F rg.
Let’s take (i) and (ii), in which��

1 .Rr/ > 0 as well. Since player 1 is willing to mix in equilibrium
between (at least) these two pure strategies, it follows that his expected payoff should be the same no matter
which one of them he uses. The expected payoff fromRf is U1.Rf; q/ D .�1=2/q C .1/.1�q/ D 1� 3

2
q,

and the expected payoff fromRr is U1.Rr; q/ D .0/q C .1/.1 � q/ D 1 � q. In MSNE, these two have
to be equal, so1 � 3

2
q D 1 � q, which implies5=2q D 0, or q D 0. Hence, in any MSNE in which player

1 puts positive probability on bothRf andRr requires thatq D 0; that is, that player 2 choosesp with
certainty. This makes intuitive sense, which we can verify by looking at the payoff matrix. Observe that
bothRr andRf give player 1 a payoff of 1 againstp but thatRf is strictly worse againstm. This implies
that should player 2 choosem with positive probability, player 1 will strictly prefer to playRr . Therefore,
player 1 would be willing to randomize between these two pure strategies only if player 2 is expected to
choosep for sure.

Given that behavior for player 2, player 1 will never put positive probability onF r because conditional
on player 2 choosingp, Rr andRf strictly dominate it. In other words, case (i) cannot happen in MSNE.

We now know that if player 1 usesRr andRf , he can only do so in case (ii). But if player 1 is certain
not to chooseF r , thenm strictly dominatesp for player 2:U2.�1; m/ D 1=2�1.Rf / > �1 D U2.�1; p/

for any strategy in (ii). This now implies thatq D 1 because player 2 is certain to choosem. But this
contradictsq D 0 which we found has to hold for any equilibrium mixed strategy that puts positive weight
on bothRr andRf . Hence, it cannot be the case that player 1 plays (ii) in MSNE either.

This leaves one last possibility to consider, so suppose he puts positive probability on Rf and F r .
Since he is willing to mix, it has to be the case thatU1.Rf; ��

2 / D U1.F r; ��

2 /. We know that the expected
payoffs areU1.Rf; ��

2 / D �1=2q C .1 � q/ D 1=2q D U1.F r; ��

2 /, which impliesq D 1=2. That is, if
player 1’s equilibrium mixed strategy is of type (iii), then player 2 must mix herself, and she must do so
precisely with probability1=2. However, this now implies thatU1.Rf; 1=2/ D 1=4 < 1=2 D U1.Rr; 1=2/.
That is, player 1’s expected payoff from the strategyRr , which he is not supposed to be using, is strictly
higher than the payoff from the pure strategies in the support of the mixed strategy. This means that player
1 will switch to Rr , which implies that case (iii) cannot occur in MSNE either. We conclude that there
exists no MSNE in which player 1 puts positive probability onRf .

In this particular case, you can also observe thatRr strictly dominatesRf for any mixed strategy for
player 2 that assigns positive probability tom. Since we know that player 2 must mix in equilibrium, it
follows that player 1 will never playRf with positive probability in any equilibrium. Thus, we can elimi-
nate that strategy. Note that althoughRr weakly dominatesRf , this is not why we eliminateRf . Instead,
we are making an equilibrium argument and proving thatRf will never be chosen in any equilibrium with
positive probability.

So, any Nash equilibrium must involve player 1 mixing betweenRr andF r . Since he will never play
Rf in equilibrium, we can eliminate this strategy from consideration altogether, leavingus with the simple
2 � 2 game shown in Fig. 27 (p. 27). Lets be the probability of choosingRr , and1 � s be the probability
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of choosingF r .

Player 1

Player 2
m p

Rr 0; 0 1; �1

F r 1=2; �1=2 0; 0

Figure 27: Myerson’s Card Game: Further Reduction after Equilibrium Reasoning.

We do not have to worry about partially mixed strategies: since each playerhas only two pure strategies
each, any mixture must be complete. Hence, we only need equate the payoffs to find the equilibrium
mixing probabilities. Because player 1 is willing to mix, the expected payoffs from the two pure strategies
must be equal. Thus,.0/q C .1/.1 � q/ D 1=2q C .0/.1 � q/, which implies thatq D 2=3. Since player
2 must be willing to randomize as well, her expected payoffs from the pure strategies must also be equal.
Thus,.0/s C �1=2.1 � s/ D .�1/s C .0/.1 � s/, which implies thats D 1=3. We conclude that the unique
mixed strategy Nash equilibrium of the card game: is

˝�

��

1 .Rr/ D 1=3; ��

1 .F r/ D 2=3

�

;
�

��

2 .m/ D 2=3; ��

2 .p/ D 1=3

�˛

:

That is, player 1 raises for sure if he has a red (winning) card, and raises with probability1=3 if he has a
black (losing) card. Player 2 meets with probability2=3 when she sees player 1 raise in equilibrium. The
expected payoff in this unique equilibrium for player 1 is:

.1=2/ Œ2=3.2/ C 1=3.1/� C .1=2/ Œ1=3 .2=3.�2/ C 1=3.1// C 2=3.�1/� D 1=3;

and the expected payoff for player 2, computed analogously, is�1=3. Of course, we could have simply
exploited the fact that in MSNE all pure strategies yield the same expected payoff to obtain:

U �

1 D U1.Rr/ D ��

2 .p/ D 1=3 and U �

2 D U2.p/ D ���

1 .Rr/ D �1=3:

If you are risk-neutral, you should only agree to take player 2’s role if offered a pre-play bribe of at least
$0.34 because you expect to lose $0.33.

Let’s think a bit about the intuition behind this MSNE. First, note that player 2 cannot meet or pass with
certainty in any equilibrium. If she passed whenever player 1 raised, thenplayer 1 would raise even when
he has a losing card. But if that’s true, then raising would not tell player 2 anything about the color of the
card, and so she expects a 50-50 chance to win if she meets. With these odds, she is better off meeting: her
expected payoff would be 0 if she meets (50% chance of winning $2 and 50% of losing the same amount).
Passing, on the other hand, guarantees her a payoff of�1. Of course, if she met with certainty, then player
1 would never raise if he has the losing card. This now means that whenever player 1 raises, player 2
would be certain that he has the winning card, but in this case she surely should not meet: passing is much
better with a payoff of�1 versus a truly bad loss of�2. So it has got to be the case that player 2 mixes.

Second, we have seen that player 1 cannot raise without regard for the color of the card in any equilib-
rium: if he did that, player 2 would meet with certainty, but in that case it is better tofold with a losing card.
Conversely, player 1 cannot fold regardless of the color because nomatter what player 2 does, raising with
a winning card is always better. Hence, we conclude that player 1 must raise for sure if he has the winning
card. But to figure out the probability with which he must bluff, we need to calculate the probability with
which player 2 will meet a raise. It is these two probabilities that the MSNE pins down.

Intuitively, upon seeing player 1 raise, player 2 would still be unsure about the color of the card, although
she would have an updated estimate of that probability of winning. She shouldbecome more pessimistic
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if player 1 raises with a strictly higher probability on a winning card. Hence, she would use this new
probability of victory to decide her mixture. Bayes Rule will give you precisely this updated probability:

PrŒblackj1 raises� D
PrŒ1 raisesjblack� � PrŒblack�

PrŒ1 raisesjblack� � PrŒblack� C PrŒ1 raisesjred� � PrŒred�

D
�1.Rr/ .1=2/

�1.Rr/ .1=2/ C .1/ .1=2/
D

.1=3/ .1=2/

.1=3/ .1=2/ C .1/ .1=2/

D 1=4:

In other words, upon seeing player 1 raise, player 2 revises her probability of winning (the card being
black) from 1=2 down to 1=4. Given this probability, what should her best response be? The expected
payoff from meeting under these new odds is1=4.2/ C 3=4.�2/ D �1, which is the same as her payoff
from passing. This should not be surprising: player 1’s mixing probabilitymust be making her indifferent
if she is willing to mix. For her part, she must choose the mixture that makes player1 willing to mix
between his two pure strategies, and this mixture is to meet with probability2=3. That is,player 1’s mixed
strategy makes player 2 indifferent, which is required if she is to mix in equilibrium. Conversely, her
strategy must be making player 1 indifferent between his pure strategies,so he is willing to mix too.

It is important to note that player 1 is not mixingin order to make player 2 indifferent between meeting
and passing: instead this is afeature(or requirement) of optimal play. To see that, suppose that his strategy
did not make her indifferent, then she would either meet or pass for sure,depending on which one is better
for her. But as we have just seen, playing a pure-strategy cannot beoptimal because of the effect it will
have on player 1’s behavior. Therefore, optimality itself requires that player 1’s behavior will make her
indifferent. In other words, players are not looking to enure that their opponents are indifferent so that
they would play the appropriate mixed strategy. Rather, their own efforts to find an optimal strategy render
their opponents indifferent.12

By the way, you have just solved an incomplete information signaling game! Recall that in the
original description, player 1 sees the color of the card (so he is privately informed about it) and can
“signal” this to player 2 through his behavior. Observe that his action doesreveal some, but not all,
information: after seeing him raise, player 2 updates to believe that her probability of winning is worse
than random chance. We shall see this game again when we solve more gamesof incomplete information
and we shall find this MSNE is also the perfect Bayesian equilibrium. For now, aren’t you glad that on the
first day you learn what a Nash equilibrium is, you get to solve a signaling game which most introductory
classes wouldn’t even teach?

3.4.2 Another Simple Game

To illustrate the algorithm for solving strategic form games, we now go througha detailed example using
the game from Myerson, p. 101, reproduced in Fig. 28 (p. 29). The algorithm for finding all Nash equilibria

12This does not mean that there isn’t a philosophical problem here: if a player is indifferent among several pure strategies, then
there appears to be no compelling reason to expect him to choose the “right” (equilibrium) mixture that would rationalize his
opponent’s strategy. Clearly, any deviation from the equilibrium mixture cannot be supported if the other player guesses it—she
will simply best-respond by playing the strategy that becomes better for her. That’s why any other non-equilibrium mixture cannot
be supported as a part of equilibrium: if it were a part of equilibrium, thenthe opponent will know it and expect it, but if this were
true, she will readjust her play accordingly. The question is: if a player isindifferent among his pure strategies, then how would
his opponent guess which “deviating” mixture he may choose? This is obviously a problem in a single-shot encounter when the
indifferent player may simply pick a mixture at random (or even choosea pure strategy directly); after all, he is indifferent. In
that case, there may be no compelling reason to expect behavior that resembles Nash equilibrium. Pure-strategy Nash equilibria,
especially the strict ones, are more compelling in that respect. However,Harsanyi’s purification argument (which I mentioned
in class but which we shall see in action soon) gets neatly around this problem because in that interpretation, there is no actual
randomization.
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involves (a) checking for solutions in pure strategies, and (b) checkingfor solutions in mixed strategies.
Step (b) is usually the more complicated one, especially when there are many pure strategies to consider.
You will need to make various guesses, use insights from dominance arguments, and utilize the remarks
about optimal mixed strategies here.

Player 1

Player 2
L M R

U 7; 2 2; 7 3; 6

D 2; 7 7; 2 4; 5

Figure 28: A Strategic Form Game.

We begin by looking for pure-strategy equilibria.U is only a best response toL, but the best response
to U is M . There is no pure-strategy equilibrium involving player 1 choosingU . On the other hand,
D is a best response to bothM andR. However, onlyL is a best response toD. Therefore, there is
no pure-strategy equilibrium with player 1 choosingD for sure. This means that any equilibrium must
involve a mixed strategy for player 1 with supp.�1/ D fU; Dg. In other words, player 1 must mix in any
equilibrium. Turning now to player 2’s strategy, we note that there can be noequilibrium with player 2
choosing a pure strategy either. This is because player 1 has a unique best response to each of her three
strategies, but we have just seen that player 1 must be randomizing in equilibrium.

We now have to make various guesses about the support of player 2’s strategy. We know that it must
include at least two of her pure strategies, and perhaps all three. There are four possibilities to try.

� supp.�2/ D fL; M; Rg. Since player 2 is willing to mix, she must be indifferent between her pure
strategies, and therefore:

2�1.U / C 7�1.D/ D 7�1.U / C 2�1.D/ D 6�1.U / C 5�1.D/:

We require that the mixture is a valid probability distribution, or�1.U /C�1.D/ D 1. Note now that
2�1.U /C7�1.D/ D 7�1.U /C2�1.D/ ) �1.U / D �1.D/ D 1=2. However,7�1.U /C2�1.D/ D

6�1.U / C 5�1.D/ ) �1.U / D 3�1.D/, a contradiction. Therefore, there can be no equilibrium
that includes all three of player 2’s strategies in the support of her mixed strategy.

� supp.�2/ D fM; Rg. Since player 1 is willing to mix, it must be the case that2�2.M / C 3�2.R/ D

7�2.M / C 4�2.R/ ) 0 D 5�2.M / C �2.R/, which is clearly impossible because both�2.M / > 0

and�2.R/ > 0. Hence, there can be no equilibrium where player 2’s support consistsof M andR.
(You can also see this by inspecting the payoff matrix: if player 2 is choosingonly betweenM and
R, thenD strictly dominatesU for player 1. This means that player 1’s best response will beD but
we already know that he must be mixing, a contradiction.)13

� supp.�2/ D fL; M g. Because player 1 is willing to mix, it follows that7�2.L/ C 2�2.M / D

2�2.L/ C 7�2.M / ) �2.L/ D �2.M / D 1=2. Further, because player 2 is willing to mix, it
follows that2�1.U / C 7�1.D/ D 7�1.U / C 2�1.D/ ) �1.U / D �1.D/ D 1=2.

So far so good. We now check for profitable deviations. If player 1 is choosing each strategy
with positive probability, then choosingR would yield player 2 an expected payoff of.1=2/.6/ C

.1=2/.5/ D 11=2. Thus must be worse than any of the strategies in the support of her mixed strategy,
so let’s checkM . Her expected payoff fromM is .1=2/.7/ C .1=2/.2/ D 9=2. That is, the strategy

13Alternatively, you could simply observe that if player 2 never choosesL, thenD strictly dominatesU for player 1. But if he
is certain to chooseD, then player 2 strictly prefers to playL, a contradiction.
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which she is sure not to play yields an expected payoff strictly higher than any of the strategies in
the support of her mixed strategy. Therefore, this cannot be an equilibrium either.

� supp.�2/ D fL; Rg. Since player 1 is willing to mix, it follows that7�2.L/ C 3�2.R/ D 2�2.L/ C

4�2.R/ ) 5�2.L/ D �2.R/, which in turn implies�2.L/ D 1=6, and�2.R/ D 5=6. Further, since
player 2 is willing to mix, it follows that2�1.U / C 7�1.D/ D 6�1.U / C 5�1.D/ ) �1.D/ D

2�1.U /, which in turn implies�1.U / D 1=3, and�1.D/ D 2=3.

Can player 2 do better by choosingM ? Her expected payoff would be.1=3/.7/ C .2=3/.2/ D
11=3. Any of the pure strategies in the support of her mixed strategy yields an expected payoff of
.1=3/.2/ C .2=3/.7/ D .1=3/.6/ C .2=3/.5/ D 16=3, which is strictly better. Therefore, the mixed
strategy profile:

h.�1.U / D 1=3; �1.D/ D 2=3/ ; .�2.L/ D 1=6; �2.R/ D 5=6/i

is the unique Nash equilibrium of this game. The expected equilibrium payoffsare11=3 for player 1
and 16=3 for player 2.

This exhaustive search for equilibria may become impractical when the gamesbecome larger (either
more players or more strategies per player). There are programs, like thelate Richard McKelvey’sGambit,
that can search for solutions to many games.

3.4.3 Choosing Numbers

Players 1 and 2 each choose a positive integer up toK. Thus, the strategy spaces are bothf1; 2; : : : ; Kg.
If the players choose the same number then player 2 pays $1 to player 1, otherwise no payment is made.
Each player’s preferences are represented by his expected monetary payoff. The claim is that the game
has a mixed strategy Nash equilibrium in which each player chooses each positive integer with equal
probability.14

It is easy to see that this game has no equilibrium in pure strategies: If the strategy profile specifies the
same numbers, then player 2 can profitably deviate to any other number; if thestrategy profile specifies
different numbers, then player 1 can profitably deviate to the number that player 2 is naming. However,
this is a finite game, so Nash’s Theorem tells us there must be an equilibrium. Thus, we know we should
be looking for one in mixed strategies.

The problem here is that there is an infinite number of potential mixtures we have to consider. We attack
this problem methodically by looking at types of mixtures instead of individual ones.

Let us conjecture that players must put positive probability on each possible number in equilibrium.
Suppose, to the contrary, that player 1 does not play some number, say´, with positive probability. Then
player 2’s best response is to play´ for sure, so she will not mix. However, given that she will choose´

for sure, player 1 is certain to deviate and play´ for sure himself. Therefore, player 1 must put positive
probability on all numbers. But if player 1 mixes over all numbers, then so must player 2. To see this,
suppose to the contrary that she does not and instead plays some number,sayy, with probability zero. But
then player 1 can do strictly better by redistributing the positive weight he attaches toy to the numbers
which player 2 chooses with positive probability, a contradiction to the fact that player 1 must mix over all
numbers in equilibrium. Therefore, both players must mix over all numbers.

OK, so the probability distribution has full support. But what is the equilibriumdistribution? Since
players are mixing, they must be indifferent among their pure strategies. The only way player 1 will

14It is not clear how you get to this claim. This is the part of game theory that often requires some inspired guesswork and is
usually the hardest part. Once you have an idea about an equilibrium, you can check whether the profile is one. There is usually
no mechanical way of finding an equilibrium.
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be indifferent among his choices is when player 2 chooses each number inthe support of her mixed
strategy with the same probability. If that were not true and she chose some numbers with high probability,
then playing these numbers would give player 1 an expected payoff higher than playing any of the other
numbers, a contradiction of the equilibrium supposition. If player 1 himself chose some numbers with
higher probability, then choosing any numbers other than these would giveplayer 2 a strictly better payoff,
a contradiction too. Hence, both players must randomize over all numbers and they must assign equal
probabilities to them. There is only one way to do this: they pick each number with probability 1=K.

Let’s verify that this is MSNE by applying Proposition 1. Since all strategies are in the support of
this mixed strategy, it is sufficient to show that each strategy of each playerresults in the same expected
payoff. (That is, we only use the first part of the proposition.) Player 1’s expected payoff from each pure
strategy is1=K.1/ C .1 � 1=K/ .0/ D 1=K because player 2 chooses the same number with probability
1=K and a different number with the complementary probability. Similarly, player 2’sexpected payoff is
1=K.�1/ C .1 � 1=K/ .0/ D �1=K. Thus, this strategy profile is a mixed strategy Nash equilibrium.

3.4.4 Defending Territory

General A is defending territory accessible by 2 mountain passes againstGeneral B. General A has 3
divisions at his disposal and B has 2. Each must allocate divisions between the two passes. A wins the
pass if he allocates at least as many divisions to it as B does. A successfully defends his territory if he wins
at both passes.

General A has four strategies at his disposal, depending on the number of divisions he allocates to each
pass:SA D f.3; 0/; .2; 1/; .1; 2/; .0; 3/g. General B has three strategies he can use:SB D f.2; 0/; .1; 1/; .0; 2/g.
We construct the payoff matrix as shown in Fig. 29 (p. 31).

General A

General B
.2; 0/ .1; 1/ .0; 2/

.3; 0/ 1; �1 �1; 1 �1; 1

.2; 1/ 1; �1 1; �1 �1; 1

.1; 2/ �1; 1 1; �1 1; �1

.0; 3/ �1; 1 �1; 1 1; �1

Figure 29: Defending Territory.

This is a strictly competitive game, which (not surprisingly) has no pure strategy Nash equilibrium.
Thus, we shall be looking for MSNE. Denote a mixed strategy of General Aby .p1; p2; p3; p4/, and a
mixed strategy of General B by.q1; q2; q3/.

First, suppose that in equilibriumq2 > 0. Since General A’s expected payoff from his strategies.3; 0/

and.0; 3/ are both less than any of the other two strategies, it follows that in such an equilibrium p1 D

p4 D 0. In this case, General B’s expected payoff to his strategy.1; 1/ is then�1. However, either one of
the other two available strategies would yield a higher expected payoff. Therefore,q2 > 0 cannot occur in
equilibrium.

What is the intuition behind this result? Observe that the strategy.1; 1/ involves General B dividing
his forces and sending one division to each pass. However, this would enable General A to defeat both of
them for sure: he would send 2 divisions to one pass, and 1 division to theother. That is, he would play
either.2; 1/ or .1; 2/ but in either case, General B would lose for sure. Given that at least one of the passes
will be defended by 1 division, General B would do strictly better by attacking a pass in full force: he
would lose if he happens to attack the pass defended by 2 divisions but would win if he happens to attack
the pass defended by a single division. Thus, he would deviate from the strategy.1; 1/, so it cannot occur
in equilibrium.
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We conclude that in equilibrium General B must attack in full force one of thepasses. Note now that he
must not allow General A to guess which pass will be attack in that way. The only way to do so is to attack
each with the same probability. If this were not the case and General B attacked one of the passes with a
higher probability, then General A’s best response would be to defendthat pass with at least 2 divisions for
sure. But then General B would strictly prefer to attack the other pass. Hence, in equilibrium it has to be
the case that General B attacks both passes with probabilityq1 D q2 D 1=2.

Continuing with this logic, since General A now expects a full-scale attack on each pass with equal
probability, he knows for sure that he will lose the war with probability1=2. This is so because there is no
way to defend both passes simultaneously against a full-scale attack. The allocations.3; 0/ and.2; 1/ leave
the second pass vulnerable if General B happens to choose it, and the allocations.1; 2/ and.0; 3/ leave the
first pass vulnerable. Hence, General A’s best bet is to choose between these two combinations with equal
probability. That is, he can defend successfully the first pass and losethe second with the allocations.3; 0/

and.2; 1/, and defend successfully the second pass and lose the first with the allocations.1; 2/ and.0; 3/.
Using our notation, his strategy would be to playp1 C p2 D p3 C p4 D 1=2.

This, however, is not enough to pin down equilibrium strategies. Observethat if General A plays.0; 3/

and.3; 0/ with high probabilities, then General B can attempt to split his forces: doing sowould give him
an opportunity to sneak 1 division through an undefended pass. But wealready know that.1; 1/ cannot
be an equilibrium strategy. This implies that in equilibrium General A must not be too likely to leave a
pass undefended. Since, as we have seen, General B will launch a full-scale attack on each of the passes
with equal probability, his expected payoff is 0: given General A’s strategy, he will win with probability
1=2 and lose with probability1=2. Dividing his forces should not improve upon that expectation. This will
be so if the overall probability of General A leaving a pass undefended isno greater than1=2. That is,
p1 C p4 � 1=2. If that were not so, then General B would divide his forces and win withprobability
greater than1=2, a contradiction to the equilibrium supposition that he is equally likely to win and lose.
Thus, we conclude that the game has infinitely many MSNE. In all of these General B attacks each of the
passes in full strength with equal probability:q1 D q3 D 1=2. General A, on the other hand is equally
likely to prevail at either pass:p1 C p2 D p3 C p4 D 1=2, and not too likely to leave a pass undefended:
p1 C p4 � 1=2.

More formally, given that in any equilibriumq2 D 0, what probabilities would B assign to the other
two strategies in equilibrium? Sinceq2 D 0, it follows thatq3 D 1 � q1. General A’s expected payoff
to .3; 0/ and.2; 1/ is 2q1 � 1, and the payoff to.1; 2/ and.0; 3/ is 1 � 2q1. If q1 < 1=2, then in any
equilibriump1 D p2 D 0. In this case, B has a unique best response, which is.2; 0/, which implies that
in equilibriumq1 D 1. But if this is the case, then either of A’s strategies.3; 0/ or .2; 1/ yields a higher
payoff than any of the other two, contradictingp1 D p2 D 0. Thus,q < 1=2 cannot occur in equilibrium.
Similarly, q1 > 1=2 cannot occur in equilibrium. This leavesq1 D q3 D 1=2 to consider.

If q1 D q3 D 1=2, then General A’s expected payoffs to all his strategies are equal. We now have to
check whether General B’s payoffs from this profile meet the requirements of Proposition 1. That is, we
have to check whether the payoffs from.2; 0/ and.0; 2/ are the same, and whether this payoff is at least
as good as the one to.1; 1/. The first condition is:

�p1 � p2 C p3 C p4 D p1 C p2 � p3 � p4

p1 C p2 D p3 C p4 D 1=2

General B’s expected payoff to.2; 0/ and.0; 2/ is then 0, so the first condition is met. Note now that since
p1 C p2 C p3 C p4 D 1, we have1 � .p1 C p4/ D p2 C p3. The second condition is:

p1 � p2 � p3 C p4 � 0

p1 C p4 � p2 C p3
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p1 C p4 � 1 � .p1 C p4/

p1 C p4 � 1=2

Thus, we conclude that the set of mixed strategy Nash equilibria in this game is the set of strategy profiles:
��

p1; 1=2 � p1; 1=2 � p4; p4

�

;
�

1=2; 0; 1=2

��

wherep1 C p4 � 1=2:

This, of course, is precisely what we found with less algebra above. (But the algebra does make it very
easy.)

3.4.5 Choosing Two-Thirds of the Average

(Osborne, 34.1) Each of 3 players announces an integer from 1 toK. If the three integers are different,
the one whose integer is closest to2=3 of the average of the three wins $1. If two or more integers are the
same, $1 is split equally between the people whose integers are closest to2=3 of the average.

Formally,N D f1; 2; 3g, Si D f1; 2; : : : ; Kg, and4S D S1 � S2 � S3. There areK3 different strategy
profiles to examine, so instead we analyzetypesof profiles.

Suppose all three players announce the same numberk � 2. Then2=3 of the average is2=3k, and each
gets $1=3. Suppose now one of the players deviates tok � 1. Now 2=3 of the average is2=3k � 2=9. We now
wish to show that the player withk � 1 is closer to the new2=3 of the average than the two whose integers
wherek:

2=3k � 2=9 � .k � 1/ < k � .2=3k � 2=9/

k > 5=6

Sincek � 2, the inequality is always true. Therefore, the player withk � 1 is closer, and thus he can get
the entire $1. We conclude that for anyk � 2, the profile.k; k; k/ cannot be a Nash equilibrium.

The strategy profile.1; 1; 1/, on the other hand, is NE. (Note that the above inequality works just fine
for k D 1. However, since we cannot choose0 as the integer, it is not possible to undercut the other two
players with a smaller number.)

We now consider an strategy profile where not all three integers are the same. First consider a profile,
in which one player names a highest integer. Denote an arbitrary such profile by .k�; k1; k2/, wherek�

is the highest integer andk1 � k2. Two thirds of the average for this profile isa D 2=9.k� C k1 C k2/.
If k1 > a, thenk� is further froma thank1, and thereforek� does not win anything. Ifk1 < a, then
the difference betweenk� anda is k� � a D 7=9k� � 2=9k1 � 2=9k2. The difference betweenk1 anda is
a � k1 D 2=9k� � 7=9k1 C 2=9k2. The difference between the two is then5=9k� C 5=9k1 � 4=9k2 > 0, so
k1 is closer toa. Thusk� does not win and the player who offers it is better off by deviating tok1 and
sharing the prize. Thus, no profile in which one player names a highest integer can be Nash equilibrium.

Consider now a profile in which two players name highest integers. Denote this profile by.k�; k�; k/

with k� > k. Thena D 4=9k�C 2=9k. The midpoint of the difference betweenk� andk is 1=2.k�Ck/ > a.
Therefore,k is closer toa and wins the entire $1. Either of the two other players can deviate by switching
to k and thus share the prize. Thus, no such profile can be Nash equilibrium.

This exhausts all possible strategy profiles. We conclude that this game hasa unique Nash equilibrium,
in which all three players announce the integer 1.

3.4.6 Voting for Candidates

(Osborne, 34.2) There aren voters, of whichk support candidate A andm D n � k support candidate
B. Each voter can either vote for his preferred candidate or abstain. Each voter gets a payoff of 2 if his
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preferred candidate wins, 1 if the candidates tie, and 0 if his candidate loses. If the citizen votes, he pays a
costc 2 .0; 1/.

(a) What is the game withm D k D 1?

(b) Find the pure-strategy Nash equilibria fork D m.

(c) Find the pure-strategy Nash equilibria fork < m.

We tackle each part in turn:

(a) Let’s draw the bi-matrix for the two voters who can either (V)ote or (A)bstain. This is depicted in
Fig. 30 (p. 34).

A Supporter

B Supporter
V A

V 1 � c; 1 � c 2 � c; 0

A 0; 2 � c 1; 1

Figure 30: The Election Game with Two Voters.

Since0 < c < 1, this game is exactly like the Prisoners’ Dilemma: both citizens vote and the
candidates tie.

(b) Here, we need to consider several cases. (Keep in mind that each candidate has an equal number of
supporters.) LetnA � k denote the number of citizens who vote for A and letnB � m denote the
number of citizens who vote for B. We restrict our attention to the case wherenA � nB (the other
case is symmetric, so there is no need to analyze it separately). We now haveto consider several
different outcomes with corresponding classes of strategy profiles: (1) the candidates tie with either
(a) all k citizens voting for A or (b) some of them abstaining; (2) some candidate wins either (a) by
one vote or (b) by two or more votes. Thus, we have four cases to consider:

(a) nA D nB D k: Any voting supporter who deviates by abstaining causes his candidate to lose
the election and receives a payoff of0 < 1 � c. Thus, no voting supporter wants to deviate.
This profile is a Nash equilibrium.

(b) nA D nB < k: Any abstaining supporter who deviates by voting causes his candidate to win
the election and receives a payoff of2� c > 1. Thus, an abstaining supporter wants to deviate.
This profile is not Nash equilibrium.

(c) nA D nB C 1 or nB D nA C 1: Any abstaining supporter of the losing candidate who deviates
by voting causes his candidate to tie and increases his payoff from 0 to1 � c. These profiles
are not Nash equilibria.

(d) nA � nB C 2 or nB � nA C 2: Any supporter of the winning candidate who switches from
voting to abstaining can increase his payoff from2 � c to 2. Thus, these profiles cannot be
Nash equilibria.

Therefore, this game has a unique Nash equilibrium, in which everybody votes and the candidates
tie.

(c) Let’s apply very similar logic to this part as well:
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(a) nA D nB � k: Any supporter of B who switches from abstaining to voting causes B to win
and improves his payoff from1 to 2 � c. Such a profile cannot be a Nash equilibrium.

(b) nA D nB C 1 or nB D nA C 1, with nA < k: Any supporter of the losing candidate can switch
from abstaining to voting and cause his candidate to tie, increasing his payoff from 0 to1 � c.
Such a profile cannot be a Nash equilibrium.

(c) nA D k or nB D k C 1: Any supporter of A can switch from voting to abstaining and save the
cost of voting for a losing candidate, improving his payoff from�c to 0. Such a profile cannot
be a Nash equilibrium.

(d) nA � nB C 2 or nB � nA C 2: Any supporter of the winning candidate can switch from
voting to abstaining and improve his payoff from2 � c to 2. Such a profile cannot be a Nash
equilibrium.

Thus, whenk < m, the game has no Nash equilibrium in pure strategies.15

4 Symmetric Games

A useful class of normal form games can be applied in the study of interactions which involve anonymous
players. Since the analyst cannot distinguish among the players, it followsthat they have the same strategy
sets (otherwise the analyst could tell them apart from the different strategies they have available).

DEFINITION 13. A two-player normal form game issymmetric if the players’ sets of strategies are the
same and their payoff functions are such that

u1.s1; s2/ D u2.s2; s1/ for every.s1; s2/ 2 S:

That is, player 1’s payoff from a profile in which he chooses strategys1 and his opponent choosess2 is the
same as player 2’s payoff from a profile, in which she choosess1 and player 1 choosess2. Note that these
do not really have to be equal, it just has to be the case that the outcomes areordered the same way for
each player. (Thus, we’re not doing interpersonal comparisons.) Once we have the same ordinal ranking,
we can always rescale the appropriate utility function to give the same numbers as the other. Therefore,
we continue using the equality while keeping in mind what it is supposed to represent. A generic example,
as in Fig. 31 (p. 35) might help. You can probably already see that Prisoners’ Dilemma and Stag Hunt are

A B

A w; w x; y

B y; x ´; ´

Figure 31: The Symmetric Game.

symmetric while BoS is not. We now define a special solution concept:

DEFINITION 14. A strategy profile.s�

1 ; s�

2 / is asymmetric Nash equilibrium if it is a Nash equilibrium
ands�

1 D s�

2 .

Thus, in a symmetric Nash equilibrium, all players choose the same strategy in equilibrium. For example,
consider the game in Fig. 32 (p. 36). It has three Nash equilibria in pure strategies:.A; A/, .C; A/, and
.A; C /. Only .A; A/ is symmetric.

Let’s analyze several games where looking for symmetric Nash equilibria make sense.

15Finding the MSNE is quite involved.
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A B C
A 1,1 2,1 4,1
B 1,2 5,5 3,6
C 1,4 6,3 0,0

Figure 32: Another Symmetric Game.

4.1 Rock, Paper, Scissors

Two kids play this well-known game. On the count of three, each player simultaneously forms his hand
into the shape of either a rock, a piece of paper, or a pair of scissors. If both pick the same shape, the game
ends in a tie. Otherwise, one player wins and the other loses according to thefollowing rule: rock beats
scissors, scissors beats paper, and paper beats rock. Each obtainsa payoff of1 if he wins,�1 if he loses,
and0 if he ties. Find the Nash equilibria.

We start by the writing down the normal form of this game as shown in Fig. 33 (p. 36).

Player 1

Player 2
R P S

R 0; 0 �1; 1 1; �1

P 1; �1 0; 0 �1; 1

S �1; 1 1; �1 0; 0

Figure 33: Rock, Paper, Scissors.

It is immediately obvious that this game has no Nash equilibrium in pure strategies:The player who
loses or ties can always switch to another strategy and win. This game is symmetric and we shall look for
symmetric mixed strategy equilibria first.

Let p; q, and1 � p � q be the probability that a player choosesR; P , andS respectively. We first argue
that we must look only at completely mixed strategies (that is, mixed strategies thatput positive probability
on every available pure strategy). Suppose not, sop1 D 0 in some (possibly asymmetric) MSNE. If player
1 never choosesR, then playingP is strictly dominated byS for player 2, so she will play eitherR or
S . However, if player 2 never choosesP , thenS is strictly dominated byR for player 1, so player 1 will
choose eitherR or P in equilibrium. However, since player 1 never choosesR, it follows that he must
chooseP with probability 1. But in this case player 2’s optimal strategy will be to playS , to which either
R or S are better choices thanP . Therefore,p1 D 0 cannot occur in equilibrium. Similar arguments
establish that in any equilibrium, any strategy must be completely mixed.

We now look for a symmetric equilibrium. Player 1’s payoff fromR is p.0/Cq.�1/C.1�p�q/.1/ D

1 � p � 2q. His payoff fromP is 2p C q � 1. His payoff fromS is q � p. In a MSNE, the payoffs from
all three pure strategies must be the same, so:

1 � p � 2q D 2p C q � 1 D q � p

Solving these equalities yieldsp D q D 1=3. Thus, whenever player 2 plays the three pure strategies with
equal probability, player 1 is indifferent between his pure strategies, and hence can play any mixture. In
particular, he can play the same mixture as player 2, which would leave player2 indifferent among his
pure strategies. This verifies the first condition in Proposition 1. Becausethese strategies are completely
mixed, we are done. Each player’s strategy in the symmetric Nash equilibrium is.1=3; 1=3; 1=3/. That is,
each player chooses among his three actions with equal probabilities.
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Is this the only MSNE? We already know that any mixed strategy profile must consist only of completely
mixed strategies in equilibrium. Arguing in a way similar to that for the pure strategies, we can show that
there can be no equilibrium in which players put different weights on their pure strategies.

Generally, you should check for MSNE in all combinations. That is, you should check whether there
are equilibria, in which one player chooses a pure strategy and the other mixes; equilibria, in which both
mix; and equilibria in which neither mixes. Note that the mixtures need not be overthe entire strategy
spaces, which means you should check every possible subset.

Thus, in a2 � 2 two-player game, each player has three possible choices: two in pure strategies and
one that mixes between them. This yields 9 total combinations to check. Similarly, in a3 � 3 two-player
game, each player has 7 choices: three pure strategies, one completely mixed, and three partially mixed.
This means that we must examine 49 combinations! (You can see how this can quickly get out of hand.)
Note that in this case, you must checkbothconditions of Proposition 1.

4.2 Heartless New Yorkers

A pedestrian is hit by a taxi (happens quite a bit in NYC). There aren people in the vicinity of the accident,
and each of them has a cell phone. The injured pedestrian is unconscious and requires immediate medical
attention, which will be forthcoming if at least one of then people calls for help. Simultaneously and
independently each of then bystanders decides whether to call for help or not. Each bystander obtains v

units of utility if the injured person receives help. Those who call pay a personal cost ofc < v. If no one
calls, each bystander receives a utility of 0. Find the symmetric Nash equilibrium of this game. What is
the probability no one calls for help in equilibrium?

We begin by noting that there is no symmetric Nash equilibrium in pure strategies:If no bystander calls
for help, then one of them can do so and receive a strictly higher payoffof v � c > 0. If all call for help,
then any one can deviate by not calling and receive a strictly higher payoff v > v � c. (Note that there are
n asymmetric Nash equilibria in pure strategies: the profiles, where exactly onebystander calls for help
and none of the others do, are all Nash equilibria. However, the point ofthe game is that these bystanders
are anonymous and do not know each other. Thus, it makes sense to lookfor a symmetric equilibrium.)

Thus, the symmetric equilibrium, if one exists, should be in mixed strategies. Letp be the probability
that a person does not call for help. Consider bystanderi ’s payoff of this mixed strategy profile. If each of
the othern � 1 bystanders does not call for help, help willnot arrive with probabilitypn�1, which means
that it will be called (by at least one of these bystanders) with probability1 � pn�1.

What isi to do? His payoff isŒpn�1.0/ C .1 � pn�1/v� D .1 � pn�1/v if he does not call, andv � c

if he does. From Proposition 1, we must findp such that the payoffs from his two pure strategies are the
same:

.1 � pn�1/v D v � c

pn�1 D c=v

p� D .c=v/
1

n�1

Thus, when all other bystanders playp D p�, i is indifferent between calling and not calling. This means
he can choose any mixture of the two, and in particular, he can choosep� as well. Thus, the symmetric
mixed strategy Nash equilibrium is the profile where each bystander calls with probability1 � p�.

To answer the second question, we compute the probability which equals:

p�
n

D .c=v/
n

n�1

Sincen=.n�1/ is decreasing inn, and becausec=v < 1, it follows that the probability that nobody calls is
increasing inn. The unfortunate result is that as the number of bystanders goes up, theprobability that any
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particular person will call for help goes down. Intuitively, the reason for this is that while personi ’s payoff
to calling remains the same regardless of the number of bystanders, the payoff to not calling increases
as that number goes up, so he becomes less likely to call. This is not surprising. What is surprising,
however, is that as the size of the group increases, the probability that atleast one person will call for help
decreases.16

4.3 All-Pay Auction

There aren > 1 bidders for an object, each of whom values it atv > 0. All players simultaneously
submit bids,si � 0, and the winner is the bidder who submits the highest bid (if there are multiple highest
bidders, the winner is chosen randomly among them). Everyone pays their bid to the auctioneer regardless
of whether they win or not. The payoffs are thusv � si if bidder i is the winner, and�si if she is not.

Let us first check if this game has equilibria in pure strategies. For fun, letus deal with asymmetric
strategy profiles first. Consider any strategy profile where not all positive bids are the same. Then anyone
who has submitted a losing bid could improve their payoff by submitting a zero bid.No such profile can
be an equilibrium. Consider now a profile where there arek � 2 positive bids that are all the same, and
everyone else bids nothing. Since the object is allocated randomly among the highest bidders, each of
them expectsv=k � si . Any one of these bidders could deviate to a bidsi C " and ensure a win with a
payoffv � .si C "/. But then

v � si � " >
v

k
� si , " <

v.k � 1/

k
;

which means that such a profitable deviation always exists. Consider now aprofile where there is exactly
one highest bidder withs� and everyone else bids zero. Ifs� < v, then any of the players who bids nothing
could deviate to somes�C" and win with a strictly positive payoff. This is not possible only whens� D v.
However, the strategy profile where only one player bids cannot be an equilibrium because there is always
a lower bid that is also winning (that player can deviate to, say, half of the supposed optimal bid). There
are no asymmetric PSNE in this game.

There are also no symmetric PSNE. If nobody bids, any player could profit by making a tiny positive bid
and win. If everyone bids the same and the bid iss� < v, then it is profitable to increase the bid slightly
to break the tie and win for sure. And if everyone bidss� D v, each player is better off not bidding at all.
What about symmetric MSNE?

Let F.x/ denote the cdf induced by the mixed strategy (assume that it is atomless). Thatis, if a player
bids x, then the probability it will exceed all other bids isF.x/n�1. Since no player would ever bid
more thanv with positive probability (even winning in that case is worse than not bidding), it follows that
F.v/ D 1 in any MSNE. Since the player is willing to mix in equilibrium, they must be indifferentamong
all bids in the support ofF , or:

F.x/n�1v � x D u;

whereu is some, as yet unknown, payoff that is constant in the bid. Rearrangingterms yields:

F.x/ D

�

u C x

v

�
1

n�1

:

16This is why emergency training often says that when there are several bystanders one should not just shout “Someone call
911!” but should instead point to a specific person and shout “You call911!” This has the effect of immediately coordinating
expectations on one of the asymmetric Nash equilibria. By the way, this result is often used to “explain” the story of Kitty
Genovese, who was stabbed to death in 1964. The NYT claimed at the time that there had been 38 witnesses who saw or heard
the murder without a single one of them calling the police or rushing to help her. The story has been largely debunked: it is
not clear that anyone actually saw the murder, those who heard anythingwere apparently very few in number, many of them not
recognizing what the sounds meant, and two people did call the police.
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UsingF.v/ D 1, this means that

�

u C v

v

�
1

n�1

D 1 ) u D 0;

which pins down the expected payoff and yields the solution:

F.x/ D
�x

v

�
1

n�1

:

In other words, the strategy mixes over all bidsx � v such that the cdf satisfies the condition above, and
yields an expected payoff of zero. No bidsx > v, which are not in the support of the mixed strategy, can
improve upon that payoff because they yieldv � x < 0.

Competition among the bidders has left them with no expected surplus from the auction. Since the
mixed strategy (the pdf) that inducesF.x/ derived above is

f .x/ D

�

x
v

�
1

n�1

.n � 1/x
;

the expected payment for each bidder is:

Z v

0

xf .x/dx D
x

�

x
v

�
1

n�1

n

ˇ

ˇ

ˇ

ˇ

ˇ

v

0

D
v

n
;

which means that the expected revenue for the auctioneer isv.

5 Some Canonical Games

Several simple 2-by-2 games have proven to be especially useful in thinking through the strategic aspect
of certain situations. We have already seen the Battle of the Sexes, which is acanonical example of what
Schelling calls “mixed-motive” scenarios: situations have both cooperativeand conflictual aspects. In the
BoS game, players very much want to coordinate (on going together) but disagree which of the cooperative
outcomes should obtain (they prefer different entertainment). This is sometimes referred to as a game of
ranked coordination as opposed to one where players simply want to coordinate without preference over
the way they do it. One example of this would be choosing which side of the roadto drive on: both driving
on the left or both driving on the right are preferable to the alternatives,with neither being superior to
the other. (A similar mixed-motive scenario is the Game of Chicken, where players wish to take different
actions, and the risk is that they match instead.)

Another famous coordination game is the Stag Hunt (SH), where the problemis not that players disagree
over the preferred cooperative outcome but that they might not be able totrust each other enough to achieve
it. This is different from the Prisoner’s Dilemma (PD), where each player has a strict individual incentive
not to cooperate. Since most of you are quite familiar with the PD game, let us take a closer look at the
(much more interesting) SH.

5.1 The Stag Hunt

The Prisoner’s Dilemma is one type of social problem which assumes that unilateral defection is preferable
to mutual cooperation. There are, however, situations in which mutual cooperation is the most preferred
outcome for both players. And yet, as we shall now see, this in no way guarantees their ability to cooperate.
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The classic illustration of such a social dilemma is due to Jean-Jacques Rousseau, and the story goes
as follows. Two hunters must decide whether to cooperate,C , and hunt a stag together, or defect,D, and
chase after a rabbit individually. If the both stalk the stag, they are certainto catch it, and they can feast on
it. However, it requires both of them to stalk it, and if even one of them does not, the stag is certain to get
away. If, on the other hand, a hunter goes chasing a bunny rabbit, he iscertain to catch one regardless of
what the other one does. Assume that if the other one is also hunting for rabbits, the noise they both make
scares the tastiest rabbits away and they can only catch old and nasty hares with lower nutritional value.
In other words, if a hunter go after a rabbit, there is a slight preferencethat he does so on his own. Even
the best rabbit is worse for a hunter than his share of the stag. There is only time to stalk the stag or hunt
for rabbits, they cannot do both.

We set up the situation as a simultaneous-move two-player game. Each of the hunters has two strategies:
cooperate,C , or defect,D. The possible outcomes are: both cooperate and catch the stag (Stag), one
hunter chases a rabbit and the other stalks the stag (Yummy Bunny and Hunger, respectively), and both
hunt for rabbits (Stale Hare). The preference orderings are:

Stag � Yummy Bunny � Stale Hare � Hunger
Hunter 1 .C; C / � .D; C / � .D; D/ � .C; D/

Hunter 2 .C; C / � .C; D/ � .D; D/ � .D; C /

Table 1: Preferences in the Stag Hunt.

Compare the rankings of the strategy profiles to those in the Prisoner’s Dilemma. As before, unrecipro-
cated cooperation is the worst possible outcome for each player, and mutual defection is the second worst
outcome. Unlike the PD, however, the preferences in a Stag Hunt situation are such that both players
prefer mutual cooperation to unilateral defection.

The best responses in pure strategies involve matching what the other player is doing. Thus, if the
other hunter is expected to go after the stag, cooperating (Stag) is preferable to defecting (Yummy Bunny).
Analogously, if the other hunter is expected to go after a rabbit, defecting (Stale Hare) is preferable to
cooperating (Hunger). This means that there are two PSNE:hC; C i andhD; Di.17

Unlike the PD, mutual cooperation can be sustained in equilibrium. Unfortunately, like the PD, mutual
defection can also be an equilibrium. In that sense, assuming that both players prefer mutual cooperation
to every other possible outcome does not actually mean that they will cooperate. This is a fairly startling
result and it is worth thinking through why it happens.

Recall that a best response is a strategy that is optimal given what you think the other player is doing.
In this sense, cooperation is best if you think the other is cooperating. In aNash equilibrium, these
expectations are self-enforcing in the sense thatyourexpectation of the other player choosing to cooperate
rationalizesyour choice to cooperate, which in turn validatestheir expectation that you will cooperate,
which then rationalizestheir choice to cooperate, and this in turn validatesyour expectation that they will
cooperate, closing the circle of mutually supporting expectations.

Unfortunately, the exact same logic applies in the case of defection. If youthink your partner will
defect, you will defect as well, which validates their expectation that you willdefect, which rationalizes
their defection, which in turn validates your expectation that they will defect.Again, the circle is complete
and we have an equilibrium with mutually supporting expectations.

The question then seems to boil down to where we “begin” the circle of expectations. For instance, if we
think one of the hunters expects the other to cooperate, we end up with the cooperative equilibrium. If, on
the other hand, we think one of the hunters expects the other to defect, we end up with the non-cooperative

17This means that there is a MSNE as well. We shall derive it later when we consider this game in generic form.
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equilibrium. So which expectation is more likely? Without knowing the hunters andtheir relationship, it
is impossible to say for sure.18 However, we could ask ourselves: if I were one of these hunters, which is
the least riskychoice to make? That is, which choice gives me an outcome that leaves me leastvulnerable
to the behavior of the other hunter?

In a sense, we are trying to protect ourselves from a mistaken expectation. Let’s say I generally trust
the other hunter to cooperate but I also know that sometimes he gets tempted when he sees rabbits, and
I am not entirely sure that he will not see a rabbit or that if he sees one while stalking the stag, he won’t
abandon the stalking in order to chase after the rabbit. Now, if I cooperate, I would get the stag if he does
not get distracted but I will end up hungry if he does. If I defect, I would get the juicy rabbit if does not get
distracted, and I will end up with a stale hare if he does. When I cooperate,the worst possible thing that
can happen to me is to go hungry. When I defect, the worst possible thing that can happen to me is to end
up with a stale hare. In that sense, defection is less risky because it leaves me less vulnerable in the case
that I have misjudged my partner or he makes a mistake.

In case you are wondering, this can be formalized precisely. The notion of risk-dominanceis due to
Harsanyi and Selten, and for this game it can applied as follows. For eachequilibrium, we can compute
the product of losses if someone deviates from it. Suppose you are Hunter 1, and consider your situation.
You are supposed to play the cooperative equilibriumhC; C i but instead you deviate it. SinceC is a best
response toC , this deviation is going to cost you: your payoff fromhD; C i cannot exceed the equilibrium
payoff by the very definition of equilibrium. In this case, you are going to suffer a deviation lossof
L1 D u1.C; C / � u1.D; C /. Consider now the non-cooperative equilibriumhD; Di and suppose you
deviate from your strategy. This time, you will end up athC; Di with a deviation loss ofL0

1 D u1.D; D/�

u1.C; D/. Compare now your two deviation losses: if the loss fromhD; Di is greater than the loss from
hC; C i, L0

1 > L1, then you should beless likelyto deviate fromhD; Di. Intuitively, you stand to lose more
if you do so, so you would have less incentive to do it. From the other player’s perspective, then,hD; Di

appears less risky: you are more likely to stick with the equilibrium strategy. Wecan now apply the same
argument to the other player, if her deviation loss fromhD; Di, L0

2 D u2.D; D/ � u2.D; C /, exceeds her
deviation loss fromhC; C i, L2 D u2.C; C / � u2.C; D/, it makes sense that you should consider it more
likely that she should stick with her equilibrium strategy underhD; Di.

Putting these two together, we can compute therisk-dominanceof one equilibrium profile over another.
Take the product of the deviation losses for the players: forhC; C i it is L1 � L2, whereas forhD; Di it is
L0

1 �L0

2. The profile with thehigherproduct of losses is said to be risk-dominant: it is the one that players
are more likely to stick with. In this game, the assumptions that having the stag is marginally better than a
rabbit whereas that the failure to catch anything leads to starvation boil down toL0

i > Li . This means that
the risk-dominant profile ishD; Di. As a result, we would expecthD; Di to be the equilibrium players
coordinate on, and mutual defection will be the outcome.

The risk-dominance argument would select the non-cooperative equilibrium even though one might
initially believe that rational actors would surely coordinate on the cooperative one: after all, both of them
would get better payoffs inhC; C i than they do inhD; Di. In the context of a stag hunt, the advantage of
avoiding the worst-case scenario might not be obvious, at least not as obvious as it is when we recast the
Stag Hunt as an arms race (which we shall shortly do).19

Even small doubts about his trustworthiness may make me think about defection. Now, it gets worse
if you consider what this means for my partner. Suppose he is aware that Iharbor small doubts about his
ability to resist temptation. Suppose he is resolved to resist it too. The problemis that when he is aware

18This is where the MSNE would be a natural choice as a the solution as it would involve failure to coordinate with positive
probability.

19Evolutionary models in which reproduction rates depend on relative success from interactions also select the risk-dominant
equilibrium.
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of my doubt, he knows that I may be tempted to protect myself to avoid going home hungry. But this
then makes him even more tempted to defect in order to protect himself from being left with nothing. And
of course, I am aware of all of this, which makes me even more suspicious that he might actually defect,
which in turn makes me more likely to select the strategy that leaves me least vulnerable to that defection.
In other words,we are very likely to end up in the non-cooperative equilibrium!

This is a very pessimistic result: we both prefer the cooperative equilibrium toeverything else, and this
fact is common knowledge. And yet, even small amounts of doubt about the trustworthiness of the other
player along with desire to protect oneself from being wrong about the other is almost certain to produce
the second worst outcome for both us. In the Prisoner’s Dilemma, players are tempted to defect from
the cooperative outcome because doing so gives them unambiguous benefit. In the Stag Hunt, this is not
so: each player is certain to lose if he unilaterally defects from the cooperative outcome. In both cases,
however, mutual defection is likely to happen.

The advantage of a SH-like situation over a PD-like situation is that the social dilemma is solvable in
principle in the first case but not in the latter. For instance, if we manage to coordinate expectations and
attain a level of trust between ourselves, we will cooperate in SH but still willnot cooperate in PD. The
cooperative outcome can be sustained in equilibrium in SH but not in PD, which implies that one possible
solution to cooperation failure in SH is to work on expectations.

5.2 The Arms Race: Which Model?

To see the conceptual difference between the PD and the SH, let us modelan arms race as either a PD or
a SH. Suppose it is determined that a new technology has just emerged and that it allows both us and our
enemy to produce a super weapon that can guarantee winning a confrontation against an opponent who
does not have it. The confrontation is very important. If both have the weapon, the effects cancel each
other out. It takes a year to construct the weapon, but once built, it becomes immediately useful. The
weapon is quite costly and each nation must shift resources from consumer goods to the military sector,
which is politically unattractive. Should we build the weapon or not?

We have already simplified the situation drastically in this description. Let’s now represent it with a
game. There are two players, “us” and “they.” Each has two options: defect and build the weapon,D, or
cooperate and do not build it,C . There are four outcomes: both build the weapon (an arms race), only one
builds the weapon (the one that does wins), or neither does (status quo).If only the enemy arms, we don’t
pay the cost of arming but lose the confrontation, which is really bad:defeat. If we arm and the enemy
arms as well, then we pay the cost but since nobody can get the upper hand, no confrontation occurs:arms
race. If we are the one side with the weapon, then we pay the cost but win the confrontation, which is
really good:victory. If neither side arms, no confrontation occurs:status quo. If we arm, we pay the cost
of doing so regardless of whether the weapon is used or not. The strategic form is:

Player 1

Player 2
C D

C Status Quo Defeat, Victory
D Victory, Defeat Arms Race

Figure 34: The Arms Race.
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5.2.1 As a Prisoner’s Dilemma

For this scenario, assume that the confrontation is very important so that thebenefits of winning it exceed
the costs of producing the weapon. The preference ordering is as follows:

Victory � Status Quo� Arms Race� Defeat:

Note that victory is preferred to the status quo because the benefits from winning the confrontation are
so high that even when we factor in the costs of building the weapon, it is still better than the status quo
life with the enemy. The status quo, however, is preferred to an arms race because with an arms race
we pay the costs of building the weapon but we don’t get anything out of itexcept that the enemy can’t
defeat us, which is what the status quo already is. Finally, the arms race is preferred to defeat because
losing is so disastrous that it is worse than avoiding the costs of building the weapon. Since the situation
is symmetrical, our opponent has similar preferences.

These preferences give each individual player very strong incentives to build the weapon: each is strictly
better better off doing so irrespective of what the other player does. Ifthe other player is expected to
cooperate by not building, defection yields Victory, which is preferable tothe Status Quo. If the other
player is expected to defect by building, defection yields an Arms Race, which is preferable to Defeat.C
is strictly dominated byD, and thus the unique Nash equilibrium to this game ishD; Di. The equilibrium
outcome is an arms race: both players lose because they pay the costs of building the weapons but do not
get any benefit from having them.

5.2.2 As a Stag Hunt

One possible objection to depicting the Arms Race dilemma as a PD is that it seems to require the actors
to be aggressive in the sense that they both prefer to compel the other to capitulate than live with the status
quo. Historically, even classic antagonists sometimes become essentially status quo powers over time. We
could argue that the Arms Race had ceased to be a PD and had become a SH situation:

Status Quo � Victory � Arms Race � Defeat
Player 1 .C; C / � .D; C / � .D; D/ � .C; D/

Player 2 .C; C / � .C; D/ � .D; D/ � .D; C /

Table 2: Stag Hunt Preferences for the Arms Race Game.

Mutual disarmament would be the cooperative outcome which preserves thestatus quo and avoids the
expense of building weapons. If the other side is expected to cooperate,then each player prefers to do so
as well. On the other hand, if one fails to arm when the other one does, the disarmed player would be
saddled with the worst possible outcome: defeat. Prudential reasoning suggests that the less risky choice
is to arm: you would get your second-best choice is the opponent is cooperating and you would end up
in an arms race if he defects as well. An arms race, while expensive, is muchpreferable to defeat. Small
amounts of suspicion about the opponent’s intent would then makehD; Di the more likely outcome.

The logic of the arms race in a SH-like scenario is fundamentally one of mistrust,risk-aversion, and
prudential reasoning. The logic of an arms race in a PD-like scenario is one of desire to exploit the other
side’s cooperative effort combine with a desire to avoid being saddled withthe worst possible outcome. In
this sense, the Stag Hunt is probably captures the dynamics of fear-induced hostility much better than a
Prisoner’s Dilemma.

In international politics, one cannot know the intent and motivations of one’s opponent (or partner).
We cannot peek into the heads of decision-makers to verify that they do not intend to attack us, which
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is (of course) what they usually claim. Intentions are not only unverifiable, they are volatile. Changing
governments, the particular mood of the leader, or many other factors may change the evaluation of the
desirability of attack on a moment’s notice. This is why states normally do not rely on intentions, they are
forced toinfer intent fromobservablecapabilities and behavior.

This is where suspicion comes into play. If I cannot be certain that my opponent has no intention to
attack me, I must admit the possibility (however small) that he might do so. Since being defeated is the
worst possible scenario for me, prudential reasoning might lead me risk losing the cooperative outcome
in favor of securing, at the very least, a costly preservation of the statusquo. So I build some weapons to
guarantee my security. Unfortunately, my act of increasing my security immediately decreases the security
of my opponent. He would reason as follows: “I was almost sure that he didnot have hostile intent but
now I see him arming. I know he claims it is purely for defense but is that so?Perhaps he intends to catch
me unprepared and defeat me? And even if that is not so, he clearly doesnot trust me enough or else he
would not have started arming. I would like to reassure him that I can be trusted but the only way to do so
is to remain unarmed, which unfortunately is very risky if he does happen to have aggressive intent. So I
better arm just to make sure I will not have to surrender in that eventuality.”

My opponent then arms as well, which makes me even less secure. We both have matched each other
in armaments, the status quo survives, but we also learned that we cannottrust each other not to arm.
Because we cannot observe intent, we can only see the arming decision which could be because the other
side is afraid or it could be because the other side is aggressive. Reassurance being too risky, we opt for the
prudential choice and continue arming, further increasing the suspicion and hostility. The process feeds on
itself and rationalizes the non-cooperative outcome, just as in the original Stag Hunt story. The process, in
which small doubts lead to defensive measures which increase the insecurity of the opponent, who reacts
with defensive measures of his own, which increases my insecurity and aswell as my doubts leading to
further defensive measures on my part, is called theSecurity Dilemma, and it is very similar to the Stag
Hunt scenario.

Notice that once the suspicion starts, it is in the interest of the players to restore trust and get the
cooperative equilibrium. Unfortunately, trust can only be restored if oneof the players decides to take the
risk and plunge into unilateral disarmament. If his opponent turns out to have a SH preference structure
(prefers the status quo without arms to victory), then this gesture would be reciprocated and the players
could potentially go to a stable cooperative solution. If, on the other hand, one’s opponent turns out to have
a PD preference structure, then one risks defeat. If one suspects that the opponent has PD preferences or
if one’s opponent is so suspicious that he would ignore the gesture, no player would make the necessary
first step to achieving cooperation.

What model you think represents the Arms Race problem best depends onwhat you think the structure
of the preferences is. If you think of the Arms Race as a Prisoner’s Dilemma, you would not recommend
trust-building and risky unilateral actions: the opponent is sure to ignore anything you say and would not
reciprocate restraint because exploiting your weakness is preferableto cooperation. If you think of the
Arms Race as a Stag Hunt, on the other hand, you would recommend trust-building, and you might even
recommend a dramatic unilateral gesture that runs serious risks but that can persuade the opponent of your
peaceful intent.

5.3 Generic Conflict Games

We have now seen several canonical games like Chicken, the Stag Hunt, and the Prisoner’s Dilemma.
When the games involve no uncertainty either because of chance moves outside the players’ control or
because of mixed strategies, the precise values of the payoffs do not matter, only their ordinal ranking
does. However, when the game does involve chance — as it must whenever some player uses a mixed
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strategy — then the cardinal values become important. Why it is so is a bit technical, but essentially it
is because risky choices involve attitudes toward risks and the sizes of the payoffs loom large in those
calculations. When I am running a 20% risk of disaster for an 80% chanceof the other player capitulating,
it certainly matters not merely that disaster is worse than him capitulating but alsojust how much worse
it is. The worse it is, the less willing I become to take my chances. Von Neumann and Morgenstern’s
Expected Utility Theory in fact specifies the assumptions about preferences over risky choices we need to
make in order to ensure that we can represent these preferences with numbers and calculate the resulting
expected utilities.

Consider a generic two-player simultaneous-move game where each playerhas only two pure strategies:
escalate (E) or not�E. We can represent it in a 2-by-2 payoff matrix, as in Fig. 35 (p. 45). The mnemonics
for the variables areW for “war”, V for “victory”, D for “defeat”, andS for “status quo”.

Player 1

Player 2
�E E

�E S; S D; V

E V; D W; W

Figure 35: The Generic Game.

We shall now see how varying the ordinal rankings among these variablesyields all the games we have
seen so far, and how we can glean some additional insights from representing them in this form. First,
however, we shall make a crucial assumption that we shall maintain more or less throughout all models
that we are going to analyze: we shall assume that our players are not war-loving and do not like defeat:
they always prefer both the status quo and victory to either war or defeat.In our notation, we are going to
assume that

ASSUMPTION1. Players are not war-loving,S � W andV � W , and want to avoid defeat,S � D and
V � D.

The only variation we shall allow is between the rankings ofS andV — which we can think of as the
strength of the incentive players have to take advantage of the cooperative behavior of the opponent (do
they reward cooperation with restraint and obtainS or do they exploit it and obtainV ), and the rankings
of W andD — which we can think of as their fear of being exploited (do they prefer to letit happen and
obtainD, or would they rather avoid it and obtainW ).20

What can we say about this game? We know thathE; ei will be an equilibrium wheneverW � D.
Moreover, it will be the unique equilibrium ifV � S too. In other words, if the complete ordering is

V � S � W � D;

then the game is aPrisoner’s Dilemmaand its unique equilibrium yields the payoffs that are second-worst
for the players. When the fear of being exploited (W � D) combines with a desire to take advantage of
the other player (V � S ), then players will be unable to coordinate on a cooperative outcome regardless
of the amount of communication they are allowed to engage in.

If, on the other hand,S � V , thenh�E; �ei will be an equilibrium as well. When the ordering is

S � V � W � D;

20We are making these assumptions because otherwise our insights will be superficial: it is not going to be very helpful if we
found out that players go to war in equilibrium when they both value war the most. This is not to say that this cannot happen but
that the analysis is trivial. It would be much more interesting if we found thatplayers go to war in equilibrium even though war
is among their least-preferred outcomes.
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then the game is aStag Hunt, and it has two-pure strategy equilibria, withh�E; �ei being the one both
players prefer (it, in fact, yields the highest possible payoff for each player), but wherehE; ei is risk-
dominant, making it more likely for the players to coordinate on that profile and obtain their next-to-worst
payoffs. Thus, making the status quo more attractive — which eliminates the desire to take advantage of
the other player — can help, but the resulting situation (which still has the fearof being exploited looming
as the worst possible outcome) still presents players with a difficult dilemma where the outcome can be
very dependent on the amount of trust they have for each other. In most circumstances, this trust will not
be enough to overcome to fear, and players will again end up with their next-to-worst outcome.21

You might be tempted to conclude that perhaps it is the fear of being exploited that is causing the
problem here, so let’s suppose players do not have it.D � W / but that they still want to take advantage
of each otherV � S . The resulting preference ordering will be

V � S � D � W;

and you can verify that this makes this aGame of Chicken. The two pure-strategy Nash equilibria are
hE; �ei andh�E; ei but we know that there is going to be another one in mixed strategies as well. To
find it, let p andq be probabilities with which player 1 and player 2 escalate, respectively. The expected
payoff for player 1 can be computed as follows:

U1.E; q/ D qu1.W / C .1 � q/u1.V / D u1.V / � q
�

u1.V / � u1.W /
�

U1.�E; q/ D qu1.D/ C .1 � q/u1.S/ D u1.S/ � q
�

u1.S/ � u1.D/
�

:

We know that player 1 will only be willing to mix when indifferent between his pure strategies, so in the
MSNE it must be the case thatU1.E; q/ D U1.�E; q/. Solving this tells us that player 1 will mix only
when he thinks that player 2 is going to escalate with probability

q D
u1.V / � u1.S/

u1.V / � u1.S/ C u1.D/ � u1.W /
:

The preference ordering ensures that this is a valid probability. We further conclude that whenever player
1 is mixing, player 2 must be mixing as well, which in turn pins down the precise probability with which
she must expect player 1 to escalate, which we derive by settingU2.p; E/ D U2.p; �E/, or:

p D
u2.V / � u2.S/

u2.V / � u2.S/ C u2.D/ � u2.W /
:

We already know that in the MSNE the probability of war is positive, but we can say something more about
the crisis. For example, we can ask questions like: “What happens to the probability that player 1 escalates
if player 2’s payoff from victory,u2.V /, increases?” Try answering this first without analyzing the model.
You might reason as follows: well, since player 2’s payoff from victory isnow larger than before and she
can only get this outcome by escalating, she should be more willing to escalate. In other words, increasing
the payoff for victory should make her more willing to take risks to achieve thatoutcome, soq should
go up. But since this makes escalation more dangerous for player 1 and hispayoffs have not changed, he
should be less willing to escalate. Thus, the increase in the victory payoff for player 2 must mean that she
is more likely to secure the prize without a fight, and that the overall likelihood ofwar is smaller.

The first surprise is that player 2 will not, in fact, escalate with a higher probability in equilibrium. As
you can see from the expression above,q is entirely independent ofu2.V /. This is because in equilibrium

21In fact, the Stag Hunt, like the Chicken game, also has an equilibrium in mixed strategies. It is specified exactly in the same
way as we shall do for the Chicken game, so there is no need to do it here.
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her escalation probability reflects player 1’s expectations about her behavior that makehim indifferent, and
this calculation naturally only involves player 1’s payoffs. Since these have not changed,q will not change
either.

But how can that be? Our intuition seems to demand that an increase inu2.V / must have some effect on
behavior. . . and it does, just not where you would first expect it. Consider player 1’s strategy. You can see
thatp is a function ofu2.V /, and you can easily verify that it is, in fact, strictlyincreasingin that value:

dp

du2.V /
D

u2.D/ � u2.W /
�

u2.V / � u2.S/ C u2.D/ � u2.W /
�2

> 0:

In other words, increasing player 2’s payoff from victory must make player 1 more likely to escalate in
equilibrium! What?!?! This just made matters even more confusing!

This, however, what being “in equilibrium” really means. It means that players must be willing to stick
to their strategies. Initially, player 2 is indifferent and so willing to play the mixed strategy. When her
payoff from victory increases and nothing else changes, however, she will no longer be willing to mix: the
expected payoff from escalation given the probability that player 1 escalates will now be strictly greater
than the expected payoff from not escalating, and as a result she wouldactually strictly prefer to escalate.
But if she is going to escalate, then player 1 will no longer be willing to mix either. In other words, the
strategies would no longer constitute an equilibrium. If player 1 cannot predict what his opponent is going
to do in equilibrium (i.e., player 2 is mixing), then it must be that player 2 is expected to continue to be
indifferent afteru2.V / increases. Since none of the other payoffs have changed, the only way this can
happen is through an increase in player 1’s probability of escalation (which makes her bad outcome more
likely). Since this puts more weight on the war outcome, it decreases the expected payoff from escalation
for player 2 even whenu2.V / goes up. Thus, if the mixed strategies are going to remain optimal, an
increase inu2.V / will be met with an increase inp.

In other words, our intuitive logic has some parts right (e.g., that increasing u2.V / will make player 2
prefer escalation) but fails to consider the entire effect (e.g., what happens when you put this fact together
with the requirement that players choose best responses). This is why simple intuition might sometimes
prove quite misleading.

Finally, observe that sincep goes up andq remains constant, an increase inu2.V / also leads to an
increase in the equilibrium probability of war, which is Pr.War/ D pq. Thus, an increase in the value for
victory for one of the players makes the other one more aggressive, andit makes it more likely that they
will end up fighting.

Analogous arguments establish that when a player’s value for war increases, then the probability with
which his opponent escalates in equilibrium must increase as well (p is increasing inu2.W / just like q

is increasing inu1.W /). This also seems counter-intuitive: a player’s dislike of fighting decreases but as
a result his opponent becomes more likely to escalate. The overall effectmight be less surprising: the
equilibrium probability of war increases.

Conversely, when a player’s value for the status quo increases, then his opponent’s probability of es-
calation must go down (p is decreasing inu2.S/). This is surprising when you recall that the opponent
prefers to take advantage of such failures to escalate. The overall effect, however, might be what you
expect: the equilibrium probability of war decreases. At least we obtain anunambiguous prediction: if
one is interested in preserving peace, then making the status quo more valuable (or war more costly) is the
way to go.
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6 Five Interpretations of Mixed Strategies

See Osborne and Rubinstein’sA Course in Game Theory, pp. 37-44 for a more detailed treatment of this
subject. Here, I only sketch several substantive justifications for mixed strategies.

6.1 Deliberate Randomization

The notion of mixed strategy might seem somewhat contrived and counter-intuitive. One (naïve) view is
that playing a mixed strategy means that the player deliberately introduces randomness into his behavior.
That is, a player who uses a mixed strategy commits to a randomization device which yields the various
pure strategies with the probabilities specified by the mixed strategy. After all players have committed in
this way, their randomization devices are operated, which produces the strategy profile. Each player then
consults his randomization device and implements the pure strategy that it tells him to. This produces the
outcome for the game.

This interpretation makes sense for games where players try to outguess each other (e.g. strictly com-
petitive games, poker, and tax audits). However, it has two problems.

First, the notion of mixed strategy equilibrium does not capture the players’ motivation to introduce
randomness into their behavior. This is usually done in order to influence thebehavior of other players.
We shall rectify some of this once we start working with extensive form games, in which players move can
sequentially.

Second, and perhaps more troubling, in equilibrium a player is indifferentbetween his mixed strategy
and any other mixture of the strategies in the support of his equilibrium mixed strategies. His equilibrium
mixed strategy is only one of many strategies that yield the same expected payoff given the other players’
equilibrium behavior.

6.2 Equilibrium as a Steady State

Osborne (and others) introduce Nash equilibrium as a steady state in an environment in which players
act repeatedly and ignore any strategic link that may exist between successive interactions. In this sense,
a mixed strategy represents information that players have about past interactions. For example, if 80%
of past play by player 1 involved choosing strategyA and 20% involved choosing strategyB, then these
frequencies form the beliefs each player can form about the future behavior of other players when they are
in the role of player 1. Thus, the corresponding belief will be that player 1playsA with probability:8 and
B with probability :2. In equilibrium, the frequencies will remain constant over time, and each player’s
strategy is optimal given the steady state beliefs.

6.3 Pure Strategies in an Extended Game

Before a player selects an action, he may receive a private signal on which he can base his action. Most
importantly, the player may not consciously link the signal with his action (e.g. a player may be in a
particular mood which made him choose one strategy over another). This sort of thing will appear random
to the other players if they (a) perceive the factors affecting the choice as irrelevant, or (b) find it too
difficult or costly to determine the relationship.

The problem with this interpretation is that it is hard to accept the notion that players deliberately make
choices depending on factors that do not affect the payoffs. However, since in a mixed strategy equilibrium
a player is indifferent among his pure strategies in the support of the mixed strategy, it may make sense to
pick one because of mood. (There are other criticisms of this interpretation,see O&R.)
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6.4 Pure Strategies in a Perturbed Game

Harsanyi introduced another interpretation of mixed strategies, according to which a game is a frequently
occurring situation, in which players’ preferences are subject to small random perturbations. Like in the
previous section, random factors are introduced, but here they affect the payoffs. Each player observes
his own preferences but not that of other players. The mixed strategy equilibrium is a summary of the
frequencies with which the players choose their actions over time.

Establishing this result requires knowledge of Bayesian Games, which we shall obtain later in the course.
Harsanyi’s result is so elegant because even if no player makes any effort to use his pure strategies with the
required probabilities, the random variations in the payoff functions induce each player to choose the pure
strategies with the right frequencies. The equilibrium behavior of other players is such that a player who
chooses the uniquely optimal pure strategy for each realization of his payoff function chooses his actions
with the frequencies required by his equilibrium mixed strategy.

6.5 Beliefs

Other authors prefer to interpret mixed strategies as beliefs. That is, the mixed strategy profile is a profile of
beliefs, in which each player’s mixed strategy is the common belief of all other players about this player’s
strategies. Here, each player chooses a single strategy, not a mixed one. An equilibrium is a steady state
of beliefs, not actions. This interpretation is the one we used when we defined MSNE in terms of best
responses. The problem here is that each player chooses an action that is a best response to equilibrium
beliefs. The set of these best responses includes every strategy in thesupport of the equilibrium mixed
strategy (a problem similar to the one in the first interpretation).

7 The Fundamental Theorem (Nash, 1950)

Since this theorem is such a central result in game theory, we shall present a somewhat more formal version
of it, along with a sketch of the proof. Afinite game is a game with finite number of players and a finite
strategy space. The following theorem due to John Nash (1950) establishes a very useful result which
guarantees that the Nash equilibrium concept provides a solution for every finite game.

THEOREM 1. Every finite game has at least one mixed strategy equilibrium. ✷

Recall that a pure strategy is a degenerate mixed strategy. This theorem does not assert the existence
of an equilibrium with non-degenerate mixing. In other words, every finite game will have at least one
equilibrium, in pure or mixed strategies.

The proof requires the idea of best response correspondences wediscussed. However, it is moderately
technical in the sense that it requires the knowledge of continuity properties of correspondences and some
set theory. I will give the outline of the proof here but you should read Gibbons pp. 45-48 for some
additional insight.

Proof. Recall that playeri ’s best response correspondenceBRi .��i / maps each strategy profile� to a
set of mixed strategies that maximize playeri ’s payoff when the other players play��i . Let ri D BRi .�/

for all � 2 † denote playeri ’s best reaction correspondence. That is, it is the set of best responses for
all possible mixed strategy profiles. Definer W † ⇒ † to be the Cartesian product of theri . (That is,
r is the set of all possible combinations of the players best responses.) Afixed pointof r is a strategy
profile �� 2 r.��/ such that, for each player,��

i 2 ri .�
�/. In other words, a fixed point ofr is a Nash

equilibrium.
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The second step involves showing thatr actually has a fixed point. Kakutani’s fixed point theorem
establishes four conditions that together are sufficient forr to have a fixed point:

1. † is compact,22 convex,23 nonempty subset of a finite-dimensional Euclidean space;24

2. r.�/ is nonempty for all� ;

3. r.�/ is convex for all� ;

4. r is upper hemi-continuous.25

We must now show that† andr meet the requirements of Kakutani’s theorem. Since†i is a simplex of
dimension #Si � 1 (that is, the number of pure strategies playeri has less 1), it is compact, convex, and
nonempty. Since the payoff functions are continuous and defined on compact sets, they attain maxima,
which meansr.�/ is nonempty for all� . To see the third case, note that if� 0 2 r.�/ and� 00 2 r.�/ are
both best response profiles, then for each playeri and˛ 2 .0; 1/,

ui .˛� 0

i C .1 � ˛/� 00

i ; ��i / D ˛ui .�
0

i ; ��i / C .1 � ˛/ui .�
00

i ; ��i /;

that is, if both� 0

i and� 00

i are best responses for playeri to ��i , then so is their weighted average. Thus,
the third condition is satisfied. The fourth condition requires sequences but the intuition is that if it were
violated, then at least one player will have a mixed strategy that yields a payoff that is strictly better than
the one in the best response correspondence, a contradiction.

Thus, all conditions of Kakutani’s fixed point theorem are satisfied, andthe best reaction correspondence
has a fixed point. Hence, every finite game has at least one Nash equilibrium. �

Somewhat stronger results have been obtained for other types of games (e.g. games with uncountable
number of actions). Generally, if the strategy spaces and payoff functions are well-behaved (that is, strategy
sets are nonempty compact subset of a metric space, and payoff functions are continuous), then Nash
equilibrium exists. Most often, some games may not have a Nash equilibrium because the payoff functions
are discontinuous (and so the best reply correspondences may actuallybe empty).

Note that some of the games we have analyzed so far do not meet the requirements of the proof (e.g.
games with continuous strategy spaces), yet they have Nash equilibria. This means that Nash’s Theorem
provides sufficient, but not necessary, conditions for the existence of equilibrium. There are many games
that do not satisfy the conditions of the Theorem but that have Nash equilibrium solutions.

Now that existence has been established, we want to be able to characterize the equilibrium set. Ideally,
we want to have a unique solution, but as we shall see, this is a rare occurrence which happens only under
very strong and special conditions. Most games we consider will have more than one equilibrium. In
addition, in many games the set of equilibria itself is hard to characterize.

22Any sequence in† has a subsequence that converges to a point in†. Alternatively, a compact set is closed and bounded.
23† is convex if every convex combination of any two points in the set is also in theset.
24For our purposes, the Euclidean space is the same asR

n, i.e. the set ofn-tuples of real numbers.
25A correspondence is upper-hemicontinuous atx0 if every sequence in whichr.x/ ! x0 has a limit which lies in the image

set ofx0. That is, if .�n; O�n/ ! .�; O�/ with O�n 2 r.�n/, then O� 2 r.�/. This condition is also sometimes referred to asr.�/

having aclosed graph.

50


	The Strategic (Normal) Form
	Reduced Strategic Form

	Mixed Strategies in Strategic Form Games
	Nash Equilibrium
	Nash Equilibrium in Pure Strategies
	Diving Money
	The Partnership Game
	Modified Partnership Game

	Strict Nash Equilibrium
	Nash Equilibrium in Mixed Strategies
	Battle of the Sexes

	Computing Nash Equilibria
	Myerson's Card Game
	Another Simple Game
	Choosing Numbers
	Defending Territory
	Choosing Two-Thirds of the Average
	Voting for Candidates


	Symmetric Games
	Rock, Paper, Scissors
	Heartless New Yorkers
	All-Pay Auction

	Some Canonical Games
	The Stag Hunt
	The Arms Race: Which Model?
	As a Prisoner's Dilemma
	As a Stag Hunt

	Generic Conflict Games

	Five Interpretations of Mixed Strategies
	Deliberate Randomization
	Equilibrium as a Steady State
	Pure Strategies in an Extended Game
	Pure Strategies in a Perturbed Game
	Beliefs

	The Fundamental Theorem (Nash, 1950)

